Colonization of heterochromatic genes by transposable elements in Drosophila

被引:39
作者
Dimitri, P [1 ]
Junakovic, N
Arcà, B
机构
[1] Univ Roma La Sapienza, Dipartimento Genet & Biol Mol, I-00185 Rome, Italy
[2] CNR, Ctr Genet Evoluzionistica, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dipartimento Genet & Biol Mol, CNR, Ctr Studio Acidi Nucl, Rome, Italy
[4] Univ Federico 2, Dipartimento Genet Biol Gen & Mol, Naples, Italy
[5] Univ Roma La Sapienza, Dipartimento Sci Sanita Pubbl, Sez Parassitol, Rome, Italy
关键词
D O I
10.1093/molbev/msg048
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As a further step toward understanding transposable element-host genome interactions, we investigated the molecular anatomy of introns from five heterochromatic and 22 euchromatic protein-coding genes of Drosophila melanogaster. A total of 79 kb of intronic sequences from heterochromatic genes and 355 kb of intronic sequences from euchromatic genes have been used in Blast searches against Drosophila transposable elements (TEs). The results show that TE-homologous sequences belonging to 19 different families represent about 50% of intronic DNA from heterochromatic genes. In contrast, only 0.1% of the euchromatic intron DNA exhibits homology to known TEs. Intraspecific and interspecific size polymorphisms of introns were found, which are likely to be associated with changes in TE-related sequences. Together, the enrichment in TEs and the apparent dynamic state of heterochromatic introns suggest that TEs contribute significantly to the evolution of genes located in heterochromatin.
引用
收藏
页码:503 / 512
页数:10
相关论文
共 46 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]  
Akashi H, 1996, GENETICS, V144, P1297
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]  
Ausubel FM., 2006, ENZYMATIC MANIPULATI
[5]   On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster [J].
Bartolomé, C ;
Maside, X ;
Charlesworth, B .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (06) :926-937
[6]  
Berghella L, 1996, GENETICS, V144, P117
[7]   Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside [J].
Bowen, NJ ;
McDonald, JF .
GENOME RESEARCH, 2001, 11 (09) :1527-1540
[8]   Mobile elements inserted in the distant past have taken on important functions [J].
Britten, RJ .
GENE, 1997, 205 (1-2) :177-182
[9]   Do the integrases of LTR-retrotransposons and class II element transposases have a common ancestor? [J].
Capy, P ;
Langin, T ;
Higuet, D ;
Maurer, P ;
Bazin, C .
GENETICA, 1997, 100 (1-3) :63-72
[10]   THE POPULATION-GENETICS OF DROSOPHILA TRANSPOSABLE ELEMENTS [J].
CHARLESWORTH, B ;
LANGLEY, CH .
ANNUAL REVIEW OF GENETICS, 1989, 23 :251-287