The COOH terminus of GATE-16, an intra-Golgi transport modulator, is cleaved by the human cysteine protease HsApg4A

被引:66
作者
Scherz-Shouval, R [1 ]
Sagiv, Y [1 ]
Shorer, H [1 ]
Elazar, Z [1 ]
机构
[1] Weizmann Inst Sci, Dept Biol Chem, IL-76100 Rehovot, Israel
关键词
D O I
10.1074/jbc.M212108200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Docking of a vesicle at the appropriate target membrane involves an interaction between integral membrane proteins located on the vesicle (v-SNAREs) and those located on the target membrane (t-SNAREs). GATE-16 (Golgi-associated ATPase enhancer of 16 kDa) was shown to modulate the activity of SNAREs in the Golgi apparatus and is therefore an essential component of intra-Golgi transport and post-mitotic Golgi re-assembly. GATE-16 contains a ubiquitin fold subdomain, which is terminated at the carboxyl end by an additional amino acid after a conserved glycine residue. In the present study we tested whether the COOH terminus of GATE-16 undergoes post-translational cleavage by a protease which exposes the glycine 116 residue. We describe the isolation and characterization of HsApg4A as a human protease of GATE-16. We show that GATE-16 undergoes COOH-terminal cleavage both in vivo and in vitro, only when the conserved glycine 116 is present. We then utilize an in vitro assay to show that pure HsApg4A is sufficient to cleave GATE-16. The characterization of this protease may give new insights into the mechanism of action of GATE-16 and its other family members.
引用
收藏
页码:14053 / 14058
页数:6
相关论文
共 30 条
[1]   Dissection of autophagosome biogenesis into distinct nucleation and expansion steps [J].
Abeliovich, H ;
Dunn, WA ;
Kim, J ;
Klionsky, DJ .
JOURNAL OF CELL BIOLOGY, 2000, 151 (05) :1025-1033
[2]   THE HUMAN UBIQUITIN-52 AMINO-ACID FUSION PROTEIN GENE SHARES SEVERAL STRUCTURAL FEATURES WITH MAMMALIAN RIBOSOMAL-PROTEIN GENES [J].
BAKER, RT ;
BOARD, PG .
NUCLEIC ACIDS RESEARCH, 1991, 19 (05) :1035-1040
[3]   A ubiquitin-like system mediates protein lipidation [J].
Ichimura, Y ;
Kirisako, T ;
Takao, T ;
Satomi, Y ;
Shimonishi, Y ;
Ishihara, N ;
Mizushima, N ;
Tanida, I ;
Kominami, E ;
Ohsumi, M ;
Noda, T ;
Ohsumi, Y .
NATURE, 2000, 408 (6811) :488-492
[4]   LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing [J].
Kabeya, Y ;
Mizushima, N ;
Uero, T ;
Yamamoto, A ;
Kirisako, T ;
Noda, T ;
Kominami, E ;
Ohsumi, Y ;
Yoshimori, T .
EMBO JOURNAL, 2000, 19 (21) :5720-5728
[5]   The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway [J].
Kirisako, T ;
Ichimura, Y ;
Okada, H ;
Kabeya, Y ;
Mizushima, N ;
Yoshimori, T ;
Ohsumi, M ;
Takao, T ;
Noda, T ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 2000, 151 (02) :263-275
[6]   Formation process of autophagosome is traced with Apg8/Aut7p in yeast [J].
Kirisako, T ;
Baba, M ;
Ishihara, N ;
Miyazawa, K ;
Ohsumi, M ;
Yoshimori, T ;
Noda, T ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1999, 147 (02) :435-446
[7]   The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABAA receptors [J].
Kittler, JT ;
Rostaing, P ;
Schiavo, G ;
Fritschy, JM ;
Olsen, R ;
Triller, A ;
Moss, SJ .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2001, 18 (01) :13-25
[8]   Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole [J].
Lang, T ;
Schaeffeler, E ;
Bernreuther, D ;
Bredschneider, M ;
Wolf, DH ;
Thumm, M .
EMBO JOURNAL, 1998, 17 (13) :3597-3607
[9]   Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes [J].
Legesse-Miller, A ;
Sagiv, Y ;
Glozman, R ;
Elazar, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32966-32973
[10]   Isolation and characterization of a novel low molecular weight protein involved in intra-Golgi traffic [J].
Legesse-Miller, A ;
Sagiv, Y ;
Porat, A ;
Elazar, Z .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (05) :3105-3109