Persistent accumulation of calcium/calmodulin-dependent protein kinase II in dendritic spines after induction of NMDA receptor-dependent chemical long-term potentiation

被引:201
作者
Otmakhov, N
Cheng, JHT
Carpenter, S
Asrican, B
Dosemeci, A
Reese, TS
Lisman, J
机构
[1] Brandeis Univ, Volen Ctr Complex Syst, Waltham, MA 02454 USA
[2] Brandeis Univ, Dept Biol, Waltham, MA 02454 USA
[3] NINDS, Bethesda, MD 20892 USA
[4] Marine Biol Lab, Woods Hole, MA 02543 USA
关键词
protein kinase; postsynaptic density; imaging; synapse; LTP; long-term potentiation; EM; tissue culture; fluorescence;
D O I
10.1523/JNEUROSCI.2350-04.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Calcium/calmodulin-dependent protein kinase II ( CaMKII) is a leading candidate for a synaptic memory molecule because it is persistently activated after long-term potentiation (LTP) induction and because mutations that block this persistent activity prevent LTP and learning. Previous work showed that synaptic stimulation causes a rapidly reversible translocation of CaMKII to the synaptic region. We have now measured green fluorescent protein (GFP)-CaMKIIalpha translocation into synaptic spines during NMDA receptor-dependent chemical LTP (cLTP) and find that under these conditions, translocation is persistent. Using red fluorescent protein as a cell morphology marker, we found that there are two components of the persistent accumulation. cLTP produces a persistent increase in spine volume, and some of the increase in GFP-CaMKIIalpha is secondary to this volume change. In addition, cLTP results in a dramatic increase in the bound fraction of GFP-CaMKIIalpha in spines. To further study the bound pool, immunogold electron microscopy was used to measure CaMKIIalpha in the postsynaptic density (PSD), an important regulator of synaptic function. cLTP produced a persistent increase in the PSD-associated pool of CaMKIIalpha. These results are consistent with the hypothesis that CaMKIIalpha accumulation at synapses is a memory trace of past synaptic activity.
引用
收藏
页码:9324 / 9331
页数:8
相关论文
共 53 条
[1]   Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation [J].
Barria, A ;
Muller, D ;
Derkach, V ;
Griffith, LC ;
Soderling, TR .
SCIENCE, 1997, 276 (5321) :2042-2045
[2]   Interaction with the NMDA receptor locks CaMKII in an active conformation [J].
Bayer, KU ;
De Koninck, P ;
Leonard, AS ;
Hell, JW ;
Schulman, H .
NATURE, 2001, 411 (6839) :801-805
[3]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[4]   A monomeric red fluorescent protein [J].
Campbell, RE ;
Tour, O ;
Palmer, AE ;
Steinbach, PA ;
Baird, GS ;
Zacharias, DA ;
Tsien, RY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (12) :7877-7882
[5]   Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors [J].
Derkach, V ;
Barria, A ;
Soderling, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3269-3274
[6]  
Dhavan R, 2002, J NEUROSCI, V22, P7879
[7]   Glutamate-induced transient modification of the postsynaptic density [J].
Dosemeci, A ;
Tao-Cheng, JH ;
Vinade, L ;
Winters, CA ;
Pozzo-Miller, L ;
Reese, TS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10428-10432
[8]   Inhibition of phosphatase activity prolongs NMDA-induced modification of the postsynaptic density [J].
Dosemeci, A ;
Vinade, L ;
Winters, CA ;
Reese, TS ;
Tao-Cheng, JH .
JOURNAL OF NEUROCYTOLOGY, 2002, 31 (8-9) :605-612
[9]   Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning [J].
Elgersma, Y ;
Fedorov, NB ;
Ikonen, S ;
Choi, ES ;
Elgersma, M ;
Carvalho, OM ;
Giese, KP ;
Silva, AJ .
NEURON, 2002, 36 (03) :493-505
[10]   Molecular mechanisms of CaMKII activation in neuronal plasticity [J].
Fink, CC ;
Meyer, T .
CURRENT OPINION IN NEUROBIOLOGY, 2002, 12 (03) :293-299