Nature of the Peierls- to Mott-insulator transition in 1D

被引:23
作者
Fehske, H [1 ]
Kampf, AP
Sekania, M
Wellein, G
机构
[1] Univ Greifswald, Inst Phys, D-17487 Greifswald, Germany
[2] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[3] Univ Erlangen Nurnberg, RRZE, D-91058 Erlangen, Germany
关键词
D O I
10.1140/epjb/e2003-00002-2
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In order to clarify the physics of the crossover from a Peierls band insulator to a correlated Mott-Hubbard insulator. we analyze ground-state and spectral properties of the one-dimensional half-filled Holstein-Hubbard model using quasi-exact numerical techniques. In the adiabatic limit the transition is connected to the band to Mott insulator transition of the ionic Hubbard model. Depending oil the strengths of the electron-phonon coupling and the Hubbard interaction the transition is either first order or evolves continuously across a narrow intermediate phase with finite spin. charge, and optical excitation gaps.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 26 条
[1]   Symmetry crossover and excitation thresholds at the neutral-ionic transition of the modified Hubbard model [J].
Anusooya-Pati, Y ;
Soos, ZG ;
Painelli, A .
PHYSICAL REVIEW B, 2001, 63 (20)
[2]   Optical absorption and single-particle excitations in the two-dimensional Holstein t-J model [J].
Bauml, B ;
Wellein, G ;
Fehske, H .
PHYSICAL REVIEW B, 1998, 58 (07) :3663-3676
[3]  
BRUNE P, CONDMAT0106007
[4]   Phase diagram of the one-dimensional Holstein model of spinless fermions [J].
Bursill, RJ ;
McKenzie, RH ;
Hamer, CJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (25) :5607-5610
[5]  
Chaikin P.M., 2007, PRINCIPLES CONDENSED
[6]   LATTICE EFFECT OF STRONG ELECTRON CORRELATION - IMPLICATION FOR FERROELECTRICITY AND SUPERCONDUCTIVITY [J].
EGAMI, T ;
ISHIHARA, S ;
TACHIKI, M .
SCIENCE, 1993, 261 (5126) :1307-1310
[7]   Critical properties of the double-frequency sine-Gordon model with applications [J].
Fabrizio, M ;
Gogolin, AO ;
Nersesyan, AA .
NUCLEAR PHYSICS B, 2000, 580 (03) :647-687
[8]   From band insulator to Mott insulator in one dimension [J].
Fabrizio, M ;
Gogolin, AO ;
Nersesyan, AA .
PHYSICAL REVIEW LETTERS, 1999, 83 (10) :2014-2017
[9]  
FEHSKE H, 2000, ADV SOLID STATE PHYS, V40, P235
[10]   REAL-SPACE SCALING METHODS APPLIED TO THE ONE-DIMENSIONAL EXTENDED HUBBARD-MODEL .1. THE REAL-SPACE RENORMALIZATION-GROUP METHOD [J].
FOURCADE, B ;
SPRONKEN, G .
PHYSICAL REVIEW B, 1984, 29 (09) :5089-5095