Note on the sampling distribution for the Metropolis-Hastings algorithm

被引:16
作者
Geweke, J
Tanizaki, H
机构
[1] Kobe Univ, Grad Sch Econ, Kobe, Hyogo 6578501, Japan
[2] Univ Iowa, Dept Econ, Iowa City, IA 52242 USA
关键词
Metropolis-Hastings algorithm; sampling distribution; taylored chain;
D O I
10.1081/STA-120018828
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Metropolis-Hastings algorithm has been important in the recent development of Bayes methods. This algorithm generates random draws from a target distribution utilizing a sampling (or proposal) distribution. This article compares the properties of three sampling distributions-the independence chain, the random walk chain, and the Taylored chain suggested by Geweke and Tanizaki (Geweke, J., Tanizaki, H. (1999). On Markov Chain Monte-Carlo methods for nonlinear and non-Gaussian state-space models. Communications in Statistics, Simulation and. Computation 28(4):867-894, Geweke, J., Tanizaki, H. (2001). Bayesian estimation of state-space model using the Metropolis-Hastings algorithm within Gibbs sampling. Computational Statistics and Data Analysis 37(2):151-170).
引用
收藏
页码:775 / 789
页数:15
相关论文
共 19 条