Vectors for airway gene delivery

被引:47
作者
Davis, Pamela B. [1 ]
Cooper, Mark J.
机构
[1] Case Western Reserve Univ, Sch Med, Dept Pediat, Cleveland, OH 44106 USA
[2] Copernicus Therapeut Inc, Cleveland, OH 44016 USA
关键词
dNA nanoparticles; gene therapy; cystic fibrosis; lung; airway epithelium;
D O I
10.1208/aapsj0901002
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Delivery of genes to the airway epithelium for therapeutic purposes seemed easy at first, because the epithelial cells interface with the environment and are therefore accessible. However, problems encountered were more substantial than were originally expected. Nonviral systems may be preferred for long-term gene expression, for they can be dosed repeatedly. Two nonviral gene transfer systems have been in clinical trials, lipid-mediated gene transfer and DNA nanoparticles. Both have sufficient efficiency to be candidates for correction of the cystic fibrosis defect, and both can be dosed repeatedly. However, lipid-mediated gene transfer in the first generation provokes significant inflammatory toxicity, which may be engineered out by adjustments of the lipids, the plasmid CpG content, or both. Both lipid-mediated gene transfer and DNA nanoparticles in the first generation have short duration of expression, but reengineering of the plasmid DNA to contain mostly eukaryotic sequences may address this problem. Considerable advances in the understanding of the cellular uptake and expression of these agents and in their practical utility have occurred in the last few years; these advances are reviewed here.
引用
收藏
页码:E11 / E17
页数:7
相关论文
共 64 条
[1]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[2]   Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis:: a double-blind placebo-controlled trial [J].
Alton, EWFW ;
Stern, M ;
Farley, R ;
Jaffe, A ;
Chadwick, SL ;
Phillips, J ;
Davies, J ;
Smith, SN ;
Browning, J ;
Davies, MG ;
Hodson, ME ;
Durham, SR ;
Li, D ;
Jeffery, PK ;
Scallan, M ;
Balfour, R ;
Eastman, SJ ;
Cheng, SH ;
Smith, AE ;
Meeker, D ;
Geddes, DM .
LANCET, 1999, 353 (9157) :947-954
[3]   Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors [J].
Baum, C ;
Kustikova, O ;
Modlich, U ;
Li, ZX ;
Fehse, B .
HUMAN GENE THERAPY, 2006, 17 (03) :253-263
[4]   Intracellular route and transcriptional competence of polyethylenimine-DNA complexes [J].
Bieber, T ;
Meissner, W ;
Kostin, S ;
Niemann, A ;
Elsasser, HP .
JOURNAL OF CONTROLLED RELEASE, 2002, 82 (2-3) :441-454
[5]   Status of gene therapy for cystic fibrosis lung disease [J].
Boucher, RC .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (04) :441-445
[6]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[7]   Compacted DNA Nanoparticles Transfect Cells by Binding to Cell Surface Nucleolin [J].
Chen, Xuguang ;
Davis, Pamela B. .
MOLECULAR THERAPY, 2006, 13 :S152-S152
[8]   Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo [J].
Chen, ZY ;
He, CY ;
Meuse, L ;
Kay, MA .
GENE THERAPY, 2004, 11 (10) :856-864
[9]   Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo [J].
Chen, ZY ;
He, CY ;
Kay, MA .
HUMAN GENE THERAPY, 2005, 16 (01) :126-131
[10]   Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo [J].
Chen, ZY ;
He, CY ;
Ehrhardt, A ;
Kay, MA .
MOLECULAR THERAPY, 2003, 8 (03) :495-500