Numerical study of the random transverse-field Ising spin chain

被引:202
作者
Young, AP
Rieger, H
机构
[1] UNIV COLOGNE, INST THEORET PHYS, D-50937 COLOGNE, GERMANY
[2] FORSCHUNGSZENTRUM JULICH, FORSCHUNGSZENTRUM, HOECHSTLEISTUNGSTRECHENZENTRUM, D-52425 JULICH, GERMANY
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.53.8486
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study numerically the critical region and the disordered phase of the random transverse-field Ising chain. By using a mapping of Lieb, Schultz, and Mattis to noninteracting fermions, we can obtain a numerically exact solution for rather large system sizes, L less than or equal to 128. Our results confirm the striking predictions of earlier analytical work and, in addition, give results for some probability distributions and scaling functions.
引用
收藏
页码:8486 / 8498
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1992, SMR
[2]  
ASAKAWA H, UNPUB
[3]   RANDOM-BOND ISING CHAIN IN A TRANSVERSE MAGNETIC-FIELD - A FINITE-SIZE-SCALING ANALYSIS [J].
CRISANTI, A ;
RIEGER, H .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (5-6) :1087-1098
[4]  
Fisher D, COMMUNICATION
[5]   RANDOM TRANSVERSE FIELD ISING SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW LETTERS, 1992, 69 (03) :534-537
[6]   CRITICAL-BEHAVIOR OF RANDOM TRANSVERSE-FIELD ISING SPIN CHAINS [J].
FISHER, DS .
PHYSICAL REVIEW B, 1995, 51 (10) :6411-6461
[7]   NONANALYTIC BEHAVIOR ABOVE CRITICAL POINT IN A RANDOM ISING FERROMAGNET [J].
GRIFFITHS, RB .
PHYSICAL REVIEW LETTERS, 1969, 23 (01) :17-+
[8]   NATURE OF GRIFFITHS SINGULARITY IN DILUTE MAGNETS [J].
HARRIS, AB .
PHYSICAL REVIEW B, 1975, 12 (01) :203-207
[9]   STATISTICAL MECHANICS OF ANISOTROPIC LINEAR HEISENBERG MODEL [J].
KATSURA, S .
PHYSICAL REVIEW, 1962, 127 (05) :1508-&
[10]   2 SOLUBLE MODELS OF AN ANTIFERROMAGNETIC CHAIN [J].
LIEB, E ;
SCHULTZ, T ;
MATTIS, D .
ANNALS OF PHYSICS, 1961, 16 (03) :407-466