SVD-based reduction to MISO TS models

被引:28
作者
Baranyi, P [2 ]
Yam, Y
Vákonyi-Kóczy, AR
Patton, RJ
机构
[1] Chinese Univ Hong Kong, Dept Automat & Comp Aided Engn, Hong Kong, Hong Kong, Peoples R China
[2] Budapest Univ Technol & Econ, Dept Telecommun & Telemat, Integrated Intelligent Syst Japanese Hungarian Lab, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Measurements & Informat Syst, Integrated Intelligent Syst Japanese Hungarian Lab, H-1111 Budapest, Hungary
[4] Univ Hull, Sch Engn, Control & Intelligent Syst Engn Res Grp, Kingston Upon Hull HU6 7RX, N Humberside, England
基金
匈牙利科学研究基金会;
关键词
complexity reduction; higher order singular value decomposition (SVD); SVD-based fuzzy rule base reduction;
D O I
10.1109/TIE.2002.807673
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main objective of this paper is to expound the singular-value-decomposition (SVD)-based reduction technique proposed to single-input-single-output Takagi-Sugeno (TS) fuzzy models to multivariable cases. The use of higher order singular value decomposition is proposed in this paper for the complexity reduction of multiple-input-single-output TS fuzzy model approximation. A detailed illustrative example of a nonlinear dynamic model is also discussed.
引用
收藏
页码:232 / 242
页数:11
相关论文
共 43 条
[1]  
Baranyi P., 2000, International Journal of Fuzzy Systems, V2, P108
[2]  
Baranyi P, 1997, PROCEEDINGS OF THE SIXTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS I - III, P265, DOI 10.1109/FUZZY.1997.616379
[3]   SVD-based complexity reduction to TS fuzzy models [J].
Baranyi, P ;
Yam, Y ;
Várkonyi-Kóczy, AR ;
Patton, RJ ;
Michelberger, P ;
Sugiyama, M .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2002, 49 (02) :433-443
[4]  
BARANYI P, 1997, P 7 INT FUZZ SYST AS, P127
[5]  
BARANYI P, 2000, FUZZY IF THEN RULES, P135
[6]  
BARANYI P, 2001, CUHKACAE0102 CHIN U
[7]  
BARANYI P, 2001, INT J ADV COMPUT INT, V5
[8]  
Chen J., 2012, Robust model-based fault diagnosis for dynamic systems, VVol. 3
[9]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[10]   What are fuzzy rules and how to use them [J].
Dubois, D ;
Prade, H .
FUZZY SETS AND SYSTEMS, 1996, 84 (02) :169-185