Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation

被引:131
作者
Ribchester, RR
Thomson, D
Wood, NI
Hinks, T
Gillingwater, TH
Wishart, TM
Court, FA
Morton, AJ
机构
[1] Univ Cambridge, Dept Pharmacol, Cambridge CB2 1PD, England
[2] Univ Edinburgh, Div Neurosci, Edinburgh EH8 9JZ, Midlothian, Scotland
关键词
atrophy; electrophysiology; Huntington's disease; neuromuscular junction; R6/2; mice; skeletal muscle;
D O I
10.1111/j.1460-9568.2004.03783.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Huntington's disease (HD) is a neurodegenerative disorder with complex symptoms dominated by progressive motor dysfunction. Skeletal muscle atrophy is common in HD patients. Because the HD mutation is expressed in skeletal muscle as well as brain, we wondered whether the muscle changes arise from primary pathology. We used R6/2 transgenic mice for our studies. Unlike denervation atrophy, skeletal muscle atrophy in R6/2 mice occurs uniformly. Paradoxically however, skeletal muscles show age-dependent denervation-like abnormalities, including supersensitivity to acetylcholine, decreased sensitivity to mu-conotoxin, and anode-break action potentials. Morphological abnormalities of neuromuscular junctions are also present, particularly in older R6/2 mice. Severely affected R6/2 mice show a progressive increase in the number of motor endplates that fail to respond to nerve stimulation. Surprisingly, there was no constitutive sprouting of motor neurons in R6/2 muscles, even in severely atrophic muscles that showed other denervation-like characteristics. In fact, there was an age-dependent loss of regenerative capacity of motor neurons in R6/2 mice. Because muscle fibers appear to be released from the activity-dependent cues that regulate membrane properties and muscle size, and motor axons and nerve terminals become impaired in their capacity to release neurotransmitter and to respond to stimuli that normally evoke sprouting and adaptive reinnervation, we speculate that in these mice there is a progressive dissociation of trophic signalling between motor neurons and skeletal muscle. However, irrespective of the cause, the abnormalities at neuromuscular junctions we report here are likely to contribute to the pathological phenotype in R6/2 mice, particularly in late stages of the disease.
引用
收藏
页码:3092 / 3114
页数:23
相关论文
共 75 条
[1]   Sensorimotor integration in movement disorders [J].
Abbruzzese, G ;
Berardelli, A .
MOVEMENT DISORDERS, 2003, 18 (03) :231-240
[2]  
ANDERSON JR, 1985, ATLAS SKELETAL MUSCL
[3]  
[Anonymous], 1991, HUNTINGTONS DIS
[4]  
[Anonymous], 2002, Huntington's disease
[5]  
BARRY JA, 1995, J NEUROSCI, V15, P6327
[6]   PHYSIOLOGICAL PROPERTIES OF DISSOCIATED MUSCLE-FIBERS OBTAINED FROM INNERVATED AND DENERVATED ADULT RAT MUSCLE [J].
BEKOFF, A ;
BETZ, WJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1977, 271 (01) :25-&
[7]  
Berardelli A, 1999, MOVEMENT DISORD, V14, P398, DOI 10.1002/1531-8257(199905)14:3<398::AID-MDS1003>3.0.CO
[8]  
2-F
[9]   ACTIVITY-DEPENDENT FLUORESCENT STAINING AND DESTAINING OF LIVING VERTEBRATE MOTOR-NERVE TERMINALS [J].
BETZ, WJ ;
MAO, F ;
BEWICK, GS .
JOURNAL OF NEUROSCIENCE, 1992, 12 (02) :363-375
[10]   SPROUTING OF ACTIVE NERVE-TERMINALS IN PARTIALLY INACTIVE MUSCLES OF THE RAT [J].
BETZ, WJ ;
CALDWELL, JH ;
RIBCHESTER, RR .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 303 (JUN) :281-&