The ARMA model in state space form

被引:29
作者
de Jong, P
Penzer, J
机构
[1] Univ London London Sch Econ & Polit Sci, Dept Stat, London WC2A 2AE, England
[2] Macquarie Univ, Dept Actuarial Studies, N Ryde, NSW 2109, Australia
关键词
filter steady state; Kalman filter smoother; state space model; time series;
D O I
10.1016/j.spl.2004.08.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article explores alternative state space representations for ARMA models. We advocate representations that have minimal state order and appealing Kalman filter steady state properties. We derive expressions for smoother output and describe concrete connections to classical infinite sample representations. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 18 条
  • [1] Anderson B., 1979, OPTIMAL FILTERING
  • [2] [Anonymous], 1998, ECONOMETRIC REV, DOI DOI 10.1080/07474938808800143
  • [3] Box G.E.P., 1994, TIME SERIES ANAL FOR
  • [4] Brockwell P. J., 1987, TIME SERIES THEORY M
  • [5] Diagnosing shocks in time series
    de Jong, P
    Penzer, J
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (442) : 796 - 806
  • [6] DEJONG P, 1991, ANN STAT, V19, P1073
  • [7] THE LIKELIHOOD FOR A STATE-SPACE MODEL
    DEJONG, P
    [J]. BIOMETRIKA, 1988, 75 (01) : 165 - 169
  • [8] Hamilton J. D., 1994, TIME SERIES ANAL
  • [9] HARVEY AC, 1979, BIOMETRIKA, V66, P49, DOI 10.2307/2335241
  • [10] Harvey AC, 1989, Forecasting, Structural Time Series Models and the Kalman Filter