Universal dynamics of independent critical relaxation modes

被引:9
作者
Nightingale, MP [1 ]
Blote, HWJ
机构
[1] Univ Rhode Isl, Dept Phys, Kingston, RI 02881 USA
[2] Delft Univ Technol, Dept Appl Phys, NL-2600 GA Delft, Netherlands
[3] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.80.1007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We obtain the relaxation times of several, progressively rapid, independent modes of three models in a two-dimensional Ising universality class. Their size dependence can be described by one single dynamic exponent and universal amplitude ratios. This analysis is based on variational approximations of the eigenstates of the Markov matrix describing heat-bath, single-spin-Aip dynamics. Monte Carlo computation of the corresponding autocorrelations and cross correlations, in which the variational error is systematically reduced, yields eigenvalues and the associated relaxation times with considerably higher statistical accuracy than is the case for traditional correlations.
引用
收藏
页码:1007 / 1010
页数:4
相关论文
共 14 条
[1]   THE CALCULATION OF EXCITED-STATES WITH QUANTUM MONTE-CARLO .2. VIBRATIONAL EXCITED-STATES [J].
BERNU, B ;
CEPERLEY, DM ;
LESTER, WA .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (01) :552-561
[2]   UNIVERSALITY IN TWO-DIMENSIONAL ISING-MODELS [J].
BLOTE, HWJ ;
NIGHTINGALE, MP .
PHYSICA A, 1985, 134 (01) :274-282
[3]   QUANTUM MONTE-CARLO FOR FLOPPY MOLECULES - VIBRATIONAL-STATES OF C-3 [J].
BROWN, WR ;
GLAUSER, WA ;
LESTER, WA .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (22) :9721-9725
[4]   THE CALCULATION OF EXCITED-STATE PROPERTIES WITH QUANTUM MONTE-CARLO [J].
CEPERLEY, DM ;
BERNU, B .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (10) :6316-6328
[5]  
Nightingale M. P., 1990, Finite Size Scaling and Numerical Simulation of Statistical Systems, P287
[6]  
Nightingale M. P., 1997, RECENT ADV QUANTUM M
[7]  
Nightingale M. P., 1983, J PHYS A, V16, pL657
[8]   Dynamic exponent of the two-dimensional ising model and Monte Carlo computation of the subdominant eigenvalue of the stochastic matrix [J].
Nightingale, MP ;
Blote, HWJ .
PHYSICAL REVIEW LETTERS, 1996, 76 (24) :4548-4551
[9]  
NIGHTINGALE MP, IN PRESS PHYSICA A A
[10]  
NIGHTINGALE MP, 1997, SPRINGER P PHYS