Effects of drought on non-mycorrhizal and mycorrhizal maize: changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids

被引:66
作者
Schellenbaum, L
Muller, J
Boller, T
Wiemken, A
Schuepp, H
机构
[1] Univ Basel, Inst Bot, CH-4056 Basel, Switzerland
[2] Eidgenoss Forsch Anstalt Obst Wien & Gartenbau, Sekt Bodenmikrobiol, CH-8820 Wadenswil, Switzerland
关键词
arbuscular mycorrhizal symbiosis; drought stress; maize; hexoses; trehalose;
D O I
10.1046/j.1469-8137.1998.00892.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To study the response of non-mycorrhizal and mycorrhizal maize plants to drought, the changes in the pools of non-structural carbohydrates and amino acids were analysed in leaves and roots of two maize cvs. Plants well colonized by the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) (60% of root length infected) and comparable non-mycorrhizal plants were subjected to moderate drought stress by reducing the water supply. This stress induced a conspicuous increase in the trehalose pool in the mycorrhizal roots, probably because it was accumulated by the fungal symbiont. Furthermore, glucose and fructose were accumulated in leaves and roots of non-mycorrhizal plants but not in the mycorrhizal ones. Starch disappeared completely from the leaves of both mycorrhizal and non-mycorrhizal plants in response to drought. Activities of soluble acid invertase and trehalase were also measured. Acid invertase activity increased during drought in the leaves of both non-mycorrhizal and mycorrhizal plants whilst in the roots it was unaffected in non-mycorrhizal plants and decreased in the mycorrhizal ones. Without drought stress, trehalase activity was considerably higher in the leaves and roots of mycorrhizal plants than in those of non-mycorrhizal plants. It increased conspicuously during drought, primarily in the leaves of non-mycorrhizal plants. A drought-induced accumulation of amino acids as well as imino acids was found in roots and leaves of both mycorrhizal and non-mycorrhizal plants; leaves of mycorrhizal plants accumulated more imino acids than those of non-mycorrhizal ones. Our results show that drought stress and the presence of a mycorrhizal fungus have a considerable effect on carbon partitioning, imino acid and amino acid accumulation in maize plants.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 37 条
[1]  
ADDY HD, 1994, MYCORRHIZA, V5, P1, DOI 10.1007/BF00204013
[2]   APPROACHES TO IMPROVE STRESS TOLERANCE USING MOLECULAR-GENETICS [J].
BARTELS, D ;
NELSON, D .
PLANT CELL AND ENVIRONMENT, 1994, 17 (05) :659-667
[3]   IDENTIFICATION AND QUANTIFICATION OF TREHALOSE IN VESICULAR-ARBUSCULAR MYCORRHIZAL FUNGI BY INVIVO C-13 NMR AND HPLC ANALYSES [J].
BECARD, G ;
DONER, LW ;
ROLIN, DB ;
DOUDS, DD ;
PFEFFER, PE .
NEW PHYTOLOGIST, 1991, 118 (04) :547-552
[4]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[5]   8 CYCLES OF SELECTION FOR DROUGHT TOLERANCE IN LOWLAND TROPICAL MAIZE .3. RESPONSES IN DROUGHT-ADAPTIVE PHYSIOLOGICAL AND MORPHOLOGICAL TRAITS [J].
BOLANOS, J ;
EDMEADES, GO ;
MARTINEZ, L .
FIELD CROPS RESEARCH, 1993, 31 (3-4) :269-286
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   PRESERVATION OF MEMBRANES IN ANHYDROBIOTIC ORGANISMS - THE ROLE OF TREHALOSE [J].
CROWE, JH ;
CROWE, LM ;
CHAPMAN, D .
SCIENCE, 1984, 223 (4637) :701-703
[8]   PROLINE BIOSYNTHESIS AND OSMOREGULATION IN PLANTS [J].
DELAUNEY, AJ ;
VERMA, DPS .
PLANT JOURNAL, 1993, 4 (02) :215-223
[9]   CARBON COST OF THE FUNGAL SYMBIONT RELATIVE TO NET LEAF-P ACCUMULATION IN A SPLIT-ROOT VA MYCORRHIZAL SYMBIOSIS [J].
DOUDS, DD ;
JOHNSON, CR ;
KOCH, KE .
PLANT PHYSIOLOGY, 1988, 86 (02) :491-496
[10]   THE OCCURRENCE OF TREHALOSE IN THE LEAVES OF THE DESICCATION-TOLERANT ANGIOSPERM MYROTHAMNUS-FLABELLIFOLIUS WELW [J].
DRENNAN, PM ;
SMITH, MT ;
GOLDSWORTHY, D ;
VANSTADEN, J .
JOURNAL OF PLANT PHYSIOLOGY, 1993, 142 (04) :493-496