Activation of ERK and Akt signaling in focal cerebral ischemia:: Modulation by TGF-α and involvement of NMDA receptor

被引:36
作者
Friguls, B
Petegnief, V
Justicia, C
Pallàs, M
Planas, AM
机构
[1] CSIC, IIBB, IDIBAPS, Dept Farmacol & Toxicol, Barcelona 08036, Spain
[2] Univ Barcelona, Fac Farm, Dept Farmacol & Farmacognosia, E-08028 Barcelona, Spain
关键词
D O I
10.1006/nbdi.2002.0553
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cerebral ischemia activates ERK and Akt pathways. We studied whether these activations were affected by treatment with the protective growth factor transforming growth factor-alpha (TGF-alpha), and whether they were mediated through N-methyl D-aspartate (NMDA) receptors. The middle cerebral artery was occluded in rats and signaling was studied 1 h later. Noncompetitive NMDA receptor antagonist MK-801 was injected i.p. before the occlusion, whereas in other rats TGF-alpha was given intraventricularly before and after occlusion. Ischemia caused ERK phosphorylation in the nucleus, localized in the endothelium and neurons. Phosphorylation of ERK was prevented by TGF-alpha, but it was enhanced in the nucleus and cytoplasm by MK-801. Also, MK-801 but not TGF-a increased p-Akt. Results suggest that preventing ERK activation is related to the protective effect of TGF-alpha, whereas the protective effect of MK-801 is associated with activation of pro-survival Akt. While results support that NMDA receptor signaling precludes Akt activation, we did not find evidence to support that it underlies ischemia-induced ERK phosphorylation. This study illustrates that neuroprotection results from a fine balance between death and survival signaling pathways. (C) 2003 Elsevier Science (USA).
引用
收藏
页码:443 / 456
页数:14
相关论文
共 65 条
[1]   Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase [J].
Ahmed, NN ;
Grimes, HL ;
Bellacosa, A ;
Chan, TO ;
Tsichlis, PN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3627-3632
[2]   MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia [J].
Alessandrini, A ;
Namura, S ;
Moskowitz, MA ;
Bonventre, JV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12866-12869
[3]   STIMULATION OF PROTEIN TYROSINE PHOSPHORYLATION BY NMDA RECEPTOR ACTIVATION [J].
BADING, H ;
GREENBERG, ME .
SCIENCE, 1991, 253 (5022) :912-914
[4]   Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart - p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion [J].
Bogoyevitch, MA ;
GillespieBrown, J ;
Ketterman, AJ ;
Fuller, SJ ;
BenLevy, R ;
Ashworth, A ;
Marshall, CJ ;
Sugden, PH .
CIRCULATION RESEARCH, 1996, 79 (02) :162-173
[5]   Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms [J].
Bonni, A ;
Brunet, A ;
West, AE ;
Datta, SR ;
Takasu, MA ;
Greenberg, ME .
SCIENCE, 1999, 286 (5443) :1358-1362
[6]  
BOSSER R, 1995, MOL CELL BIOL, V15, P661
[7]   Emerging roles for SH2/PTB-containing Shc adaptor proteins in the developing mammalian brain [J].
Cattaneo, E ;
Pelicci, PG .
TRENDS IN NEUROSCIENCES, 1998, 21 (11) :476-481
[8]   Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons [J].
Chalecka-Franaszek, E ;
Chuang, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8745-8750
[9]   N-methyl D-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures [J].
Chandler, LJ ;
Sutton, G ;
Dorairaj, NR ;
Norwood, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2627-2636
[10]   Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery [J].
Datta, SR ;
Dudek, H ;
Tao, X ;
Masters, S ;
Fu, HA ;
Gotoh, Y ;
Greenberg, ME .
CELL, 1997, 91 (02) :231-241