Electroconvulsive stimuli alter nerve growth factor but not brain-derived neurotrophic factor concentrations in brains of a rat model of depression

被引:39
作者
Angelucci, F
Aloe, L
Jiménez-Vasquez, P
Mathé, AA [1 ]
机构
[1] Karolinska Inst, Dept Physiol & Pharmacol, Div Pharmacol, Stockholm, Sweden
[2] CNR, Inst Neurobiol, I-00137 Rome, Italy
关键词
nerve growth factor; brain derived neurotrophic factor; rot brain; models of depression; electroconvulsive stimuli;
D O I
10.1016/S0143-4179(03)00004-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are proteins involved in neuronal survival and plasticity of dopaminergic, cholinergic and serotonergic neurons in the central nervous system (CNS). Moreover, it has been hypothesized that these molecules play a role in the pathophysiology as well as treatment of depression. Using an animal model of depression, the Flinders Sensitive Line (FSL) rats and their controls, the Flinders Resistant Line (FRL), we investigated the effects of electroconvulsive stimuli (ECS) on brain NGF and BDNF. ECS or SHAM ECS were administered eight times, with a 48-h interval between each treatment. NGF and BDNF were measured with enzyme-linked immunosorbent assay (ELISA). In the hippocampus ECS increased NGF concentration in FSL but not FRL rats. ECS decreased NGF concentration in the frontal cortex of FSL rats. In both FSL and FRL rats ECS increased NGF levels in the striatum. In contrast, ECS did not change BDNF concentration in hippocampus, frontal cortex and striatum of FSL and FRL rats. Our data support the notion that neurotrophin concentrations may be altered by ECS. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:51 / 56
页数:6
相关论文
共 34 条
[1]   Learning abilities, NGF and BDNF brain levels in two lines of TNF-α transgenic mice, one characterized by neurological disorders, the other phenotypically normal [J].
Aloe, L ;
Properzi, F ;
Probert, L ;
Akassoglou, K ;
Kassiotis, G ;
Micera, A ;
Fiore, M .
BRAIN RESEARCH, 1999, 840 (1-2) :125-137
[2]   Neurotrophins and depression [J].
Altar, CA .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (02) :59-61
[3]   Electroconvulsive stimuli alter the regional concentrations of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in adult rat brain [J].
Angelucci, F ;
Aloe, L ;
Jiménez-Vasquez, P ;
Mathé, AA .
JOURNAL OF ECT, 2002, 18 (03) :138-143
[4]  
Angelucci F, 2000, J NEUROSCI RES, V60, P783, DOI 10.1002/1097-4547(20000615)60:6<783::AID-JNR11>3.0.CO
[5]  
2-M
[6]   Mapping the differences in the brain concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression [J].
Angelucci, F ;
Aloe, L ;
Vasquez, PJ ;
Mathé, AA .
NEUROREPORT, 2000, 11 (06) :1369-1373
[7]   Hippocampal volume reduction in major depression [J].
Bremner, JD ;
Narayan, M ;
Anderson, ER ;
Staib, LH ;
Miller, HL ;
Charney, DS .
AMERICAN JOURNAL OF PSYCHIATRY, 2000, 157 (01) :115-117
[8]   The role of neuronal growth factors in neurodegenerative disorders of the human brain [J].
Connor, B ;
Dragunow, M .
BRAIN RESEARCH REVIEWS, 1998, 27 (01) :1-39
[9]  
Drevets WC, 2000, PROG BRAIN RES, V126, P413
[10]  
Duman RS, 1997, ARCH GEN PSYCHIAT, V54, P597