Semi-discrete shock profiles for hyperbolic systems of conservation laws

被引:23
作者
Benzoni-Gavage, S [1 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 128, F-69364 Lyon 07, France
来源
PHYSICA D | 1998年 / 115卷 / 1-2期
关键词
systems of conservation laws; shock waves; numerical schemes; retarded functional differential equations;
D O I
10.1016/S0167-2789(97)00225-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of semi-discrete shock profiles for a general hyperbolic system of conservation laws is proved. Such profiles are regarded as heteroclinic orbits of a retarded functional differential equation (RFDE). The proof relies on the Hale center manifold theorem and holds for shocks of small strength. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 14 条
[2]  
Godunov SK., 1959, MAT SBORNIK, V89, P271
[4]  
Hale J. K., 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[5]   VARIATIONAL STUDY OF THE RIEMANN PROBLEM [J].
HEIBIG, A ;
SERRE, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 96 (01) :56-88
[6]   DISCRETE SHOCKS [J].
JENNINGS, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (01) :25-37
[7]   HYPERBOLIC SYSTEMS OF CONSERVATION LAWS .2. [J].
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :537-566
[8]   NONLINEAR STABILITY OF DISCRETE SHOCKS FOR SYSTEMS OF CONSERVATION-LAWS [J].
LIU, JG ;
XIN, ZP .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 125 (03) :217-256
[9]   DISCRETE SHOCK PROFILES FOR SYSTEMS OF CONSERVATION-LAWS [J].
MAJDA, A ;
RALSTON, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (04) :445-482
[10]   DISCRETE SHOCKS FOR DIFFERENCE APPROXIMATIONS TO SYSTEMS OF CONSERVATION-LAWS [J].
MICHELSON, D .
ADVANCES IN APPLIED MATHEMATICS, 1984, 5 (04) :433-469