Fluorination as an effective tool to increase the photovoltaic performance of indacenodithiophene-alt-quinoxaline based wide-bandgap copolymers

被引:21
作者
Fan, Qunping [1 ]
Liu, Yu [1 ,2 ]
Jiang, Huanxiang [3 ]
Su, Wenyan [1 ]
Duan, Linrui [1 ]
Tan, Hua [1 ]
Li, Yuanyuan [1 ]
Deng, Jiyong [4 ]
Yang, Renqiang [3 ]
Zhu, Weiguo [1 ,2 ]
机构
[1] Xiangtan Univ, Coll Chem, Key Lab Environm Friendly Chem & Applicat, Minist Educ, Xiangtan 411105, Peoples R China
[2] Changzhou Univ, Sch Mat Sci & Engn, Changzhou 213164, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[4] Hunan Inst Engn, Sch Chem & Chem Engn, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金; 湖南省自然科学基金;
关键词
Indacenodithiophene; Quinoxaline; Fluorination; Polymer solar cells; POLYMER SOLAR-CELLS; OPEN-CIRCUIT-VOLTAGE; MOLECULAR-ENERGY LEVEL; CONJUGATED POLYMERS; SINGLE-JUNCTION; BENZODITHIOPHENE; EFFICIENCY; BENZOTHIADIAZOLE; ISOINDIGO; DONOR;
D O I
10.1016/j.orgel.2016.03.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To investigate the effect of the fluoride phenyl side-chains into quinoxaline (PQx) unit on the photovoltaic performances of polymers, we demonstrated the synthesis and characterization of two novel wide-bandgap (WBG) copolymers, PIDT-DTPQx and PIDT-DTFPQx, in which indacenodithiophene (IDT), 2,3-diphenylquinoxaline (PQx) (and/or 2,3-bis(4-fluorophenyl) quinoxaline (FPQx)) and thiophene (T) were used as the donor (D) unit, acceptor (A) unit and pi-bridge, respectively. Compared to the non-fluorine substituted PIDT-DTPQx, fluorine substituted PIDT-DTFPQx presents a deep HOMO energy level and a high hole mobility. Obviously, improved the V-oc, J(sc), and FF simultaneously, giving rise to overall efficiencies in the PIDT-DTFPQx/PC71BM-based PSCs. A highest PCE of 5.78% was obtained with a V-oc of 0.86 V, J(sc) of 10.84 mA cm(-2) and FF of 61.7% in the PIDT-DTFPQx/PC71BM-based PSCs, while PIDT-DTPQx based devices also demonstrated a PCE of 5.11%, under the illumination of AM 1.5G (100 mW cm(-2)). Note that these PCE values were achieved for PSCs without any extra treatments. Furthermore, these optimal devices have a film thickness of about 175 nm for the polymer/PC71BM-based active layers. The results provide that introduction of the fluorine atom into quinoxaline unit by side-chain engineering is one of the effective strategies to construct the promising polymer donor materials for future application of large-area polymer solar cells. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:128 / 134
页数:7
相关论文
共 59 条
[1]   Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells [J].
Amb, Chad M. ;
Chen, Song ;
Graham, Kenneth R. ;
Subbiah, Jegadesan ;
Small, Cephas E. ;
So, Franky ;
Reynolds, John R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (26) :10062-10065
[2]   Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells [J].
Ashraf, Raja Shahid ;
Meager, Iain ;
Nikolka, Mark ;
Kirkus, Mindaugas ;
Planells, Miquel ;
Schroeder, Bob C. ;
Holliday, Sarah ;
Hurhangee, Michael ;
Nielsen, Christian B. ;
Sirringhaus, Henning ;
McCulloch, Iain .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1314-1321
[3]   Device physics of polymer:fullerene bulk heterojunction solar cells [J].
Blom, Paul W. M. ;
Mihailetchi, Valentin D. ;
Koster, L. Jan Anton ;
Markov, Denis E. .
ADVANCED MATERIALS, 2007, 19 (12) :1551-1566
[4]   An isoindigo containing donor-acceptor polymer: synthesis and photovoltaic properties of all-solution-processed ITO- and vacuum-free large area roll-coated single junction and tandem solar cells [J].
Brandt, Rasmus Guldbaek ;
Yue, Wei ;
Andersen, Thomas Rieks ;
Larsen-Olsen, Thue Trofod ;
Hinge, Mogens ;
Bundgaard, Eva ;
Krebs, Frederik C. ;
Yu, Donghong .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (08) :1633-1639
[5]   Influences of the backbone randomness on the properties, morphology and performances of the fluorinated benzoselenadiazole-benzothiadiazole based random copolymers [J].
Chen, Yung-Tsung ;
Huang, Tzu-Wei ;
Wang, Chien-Lung ;
Hsu, Chain-Shu .
POLYMER CHEMISTRY, 2015, 6 (19) :3728-3736
[6]   Small-Bandgap Polymer Solar Cells with Unprecedented Short-Circuit Current Density and High Fill Factor [J].
Choi, Hyosung ;
Ko, Seo-Jin ;
Kim, Taehyo ;
Morin, Pierre-Olivier ;
Walker, Bright ;
Lee, Byoung Hoon ;
Leclerc, Mario ;
Kim, Jin Young ;
Heeger, Alan J. .
ADVANCED MATERIALS, 2015, 27 (21) :3318-3324
[7]   Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:2′,3′-d]silole Copolymer with a Power Conversion Efficiency of 7.3% [J].
Chu, Ta-Ya ;
Lu, Jianping ;
Beaupre, Serge ;
Zhang, Yanguang ;
Pouliot, Jean-Remi ;
Wakim, Salem ;
Zhou, Jiayun ;
Leclerc, Mario ;
Li, Zhao ;
Ding, Jianfu ;
Tao, Ye .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) :4250-4253
[8]   Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution [J].
Cui, Chaohua ;
Wong, Wai-Yeung ;
Li, Yongfang .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (07) :2276-2284
[9]   Effect of fluorination on the performance of poly(thieno[2,3-f]benzofuran-co-benzothiadiazole) derivatives [J].
Cui, Ruili ;
Fan, Ling ;
Yuan, Jun ;
Jiang, Lihui ;
Chen, Guohui ;
Ding, Yanhuai ;
Shen, Ping ;
Li, Yongfang ;
Zou, Yingping .
RSC ADVANCES, 2015, 5 (38) :30145-30152
[10]   Efficient solar cells based on a new polymer from fluorinated benzothiadiazole and alkylthienyl substituted thieno[2,3-f]benzofuran [J].
Cui, Ruili ;
Zou, Yingping ;
Xiao, Lu ;
Hsu, Chain-Shu ;
Keshtov, Mukhamed L. ;
Godovsky, Dmitri Yu. ;
Li, Yongfang .
DYES AND PIGMENTS, 2015, 116 :139-145