Dual Labeling with a Far Red Probe Permits Analysis of Growth and Oxidative Stress in P. falciparum-Infected Erythrocytes

被引:48
作者
Fu, Ying [1 ]
Tilley, Leann [1 ,2 ]
Kenny, Shannon [1 ]
Klonis, Nectarios [1 ,2 ]
机构
[1] La Trobe Univ, Dept Biochem, Melbourne, Vic 3086, Australia
[2] La Trobe Univ, Ctr Excellence Coherent Xray Sci, Melbourne, Vic 3086, Australia
基金
澳大利亚研究理事会; 英国医学研究理事会;
关键词
malaria; CM-H(2)DCFDA; cysteine protease; flow cytometry; far red dye; SYTO; 61; PLASMODIUM-FALCIPARUM; REACTIVE OXYGEN; LIPID-PEROXIDATION; MALARIA PARASITES; GLUTATHIONE-PEROXIDASE; HYDROGEN-PEROXIDE; FOOD VACUOLE; HEMOGLOBIN; CYTOMETRY; HEME;
D O I
10.1002/cyto.a.20856
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The malaria parasite, Plasmodium falciparum, develops within human erythrocytes, consuming host hemoglobin to support its own growth. Reactive oxygen species (superoxide and hydrogen peroxide) are by-products of hemoglobin digestion and are believed to exert significant oxidative stress on the parasite. We have characterized a cell permeant, far red fluorescent nucleic acid-binding dye, SYTO 61, that can be used to distinguish between uninfected and infected erythrocytes in a flow cytometric format. The spectral properties of SYTO 61 make it suitable for use in combination with the fluorescent reactive oxygen species reporter 5-(and-6)-chloromethy1-2',7'-dichlorodihydro-fluorescein diacetate acetyl ester. We have used this probe combination to measure oxidative stress in different stages of live P. falciparum. Low levels of the oxidized, fluorescent form of the reporter (2',7'-dichlorofluorescein, DCF) are detected in ring stage parasites; the DCF signal increases as the intraerythrocytic parasite matures into the trophozoite stage where active hemoglobin digestion occurs. Treatment of infected erythrocytes with the cysteine protease inhibitor, E-64, which inhibits hemoglobin digestion, decreases the DCF signal. We show that E-64 prevents schizont rupture but also causes delayed lethal effects when ring stage cultures are exposed to the drug. We also examined cultures of parasites in erythrocytes harboring 98% catalase inactivation and found no effect on growth and only a modest increase in DCF oxidation. (C) 2010 International Society for Advancement of Cytometry
引用
收藏
页码:253 / 263
页数:11
相关论文
共 67 条
[1]  
AEBI H, 1984, METHOD ENZYMOL, V105, P121
[2]   IDENTIFICATION OF ISOLATE-SPECIFIC PROTEINS ON SORBITOL-ENRICHED PLASMODIUM-FALCIPARUM INFECTED ERYTHROCYTES FROM GAMBIAN PATIENTS [J].
ALEY, SB ;
SHERWOOD, JA ;
MARSH, K ;
EIDELMAN, O ;
HOWARD, RJ .
PARASITOLOGY, 1986, 92 :511-525
[3]   Cell volume control in the Plasmodium-infected erythrocyte [J].
Allen, RJW ;
Kirk, K .
TRENDS IN PARASITOLOGY, 2004, 20 (01) :7-10
[4]   ORIGIN OF REACTIVE OXYGEN SPECIES IN ERYTHROCYTES INFECTED WITH PLASMODIUM-FALCIPARUM [J].
ATAMNA, H ;
GINSBURG, H .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1993, 61 (02) :231-241
[5]   PLASMODIUM-FALCIPARUM - DIFFERENTIAL SENSITIVITY INVITRO TO E-64 (CYSTEINE PROTEASE INHIBITOR) AND PEPSTATIN-A (ASPARTYL PROTEASE INHIBITOR) [J].
BAILLY, E ;
JAMBOU, R ;
SAVEL, J ;
JAUREGUIBERRY, G .
JOURNAL OF PROTOZOOLOGY, 1992, 39 (05) :593-599
[6]   Heme, heme oxygenase, and ferritin: How the vascular endothelium survives (and dies) in an iron-rich environment [J].
Balla, Jozsef ;
Vercellotti, Gregory M. ;
Jeney, Viktoria ;
Yachie, Akihiro ;
Varga, Zsuzsa ;
Jacob, Harry S. ;
Eaton, John W. ;
Balla, Gyoergy .
ANTIOXIDANTS & REDOX SIGNALING, 2007, 9 (12) :2119-2137
[7]   Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions [J].
Becker, K ;
Tilley, L ;
Vennerstrom, JL ;
Roberts, D ;
Rogerson, S ;
Ginsburg, H .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2004, 34 (02) :163-189
[8]   Glutathione -: Functions and metabolism in the malarial parasite Plasmodium falciparum [J].
Becker, K ;
Rahlfs, S ;
Nickel, C ;
Schirmer, RH .
BIOLOGICAL CHEMISTRY, 2003, 384 (04) :551-566
[9]   EQUATIONS FOR SPECTROPHOTOMETRIC ANALYSIS OF HEMOGLOBIN MIXTURES [J].
BENESCH, RE ;
BENESCH, R ;
YUNG, S .
ANALYTICAL BIOCHEMISTRY, 1973, 55 (01) :245-248
[10]   The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum [J].
Bozdech, Z ;
Llinás, M ;
Pulliam, BL ;
Wong, ED ;
Zhu, JC ;
DeRisi, JL .
PLOS BIOLOGY, 2003, 1 (01) :85-100