Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process

被引:164
作者
Rolland, F
de Winde, JH
Lemaire, K
Boles, E
Thevelein, JM
Winderickx, J
机构
[1] Katholieke Univ Leuven VIB, Lab Mol Celbiol, B-3001 Louvain, Belgium
[2] Univ Dusseldorf, Inst Mikrobiol, D-40225 Dusseldorf, Germany
关键词
D O I
10.1046/j.1365-2958.2000.02125.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, glucose activation of cAMP synthesis requires both the presence of the G-protein-coupled receptor (GPCR) system, Gpr1-Gpa2, and uptake and phosphorylation of the sugar. In a hxt-null strain that lacks all physiologically important glucose carriers, glucose transport as well as glucose-induced cAMP signalling can be restored by constitutive expression of the galactose permease. Hence, the glucose transporters do not seem to have a regulatory function but are only required for glucose uptake. We established a system in which the GPCR-dependent glucose-sensing process is separated from the glucose phosphorylation process. It is based on the specific transport and hydrolysis of maltose providing intracellular glucose in the absence of glucose transport. Preaddition of a low concentration (0.7 mM) of maltose to derepressed hxt-null cells and subsequent addition of glucose restored the glucose-induced cAMP signalling, although there was no glucose uptake. Addition of a low concentration of maltose itself does not increase the cAMP level but enhances Glu6P and apparently fulfils the intracellular glucose phosphorylation requirement for activation of the cAMP pathway by extracellular glucose. This system enabled us to analyse the affinity and specificity of the GPCR system for fermentable sugars. Gpr1 displayed a very low affinity for glucose (apparent K-a = 75 mM) and responded specifically to extracellular alpha and beta D-glucose and sucrose, but not to fructose, mannose or any glucose analogues tested. The presence of the constitutively active Gpa2(val132) allele in a wild-type strain bypassed the requirement for Gpr1 and increased the low cAMP signal induced by fructose and by low glucose up to the same intensity as the high glucose signal. Therefore, the low cAMP increases observed with fructose and low glucose in wild-type cells result only from the low sensitivity of the Gpr1-Gpa2 system and not from the intracellular sugar kinase-dependent process. In conclusion, we have shown that the two essential requirements for glucose-induced activation of cAMP synthesis can be fulfilled separately: an extracellular glucose detection process dependent on Gpr1 and an intracellular sugar-sensing process requiring the hexose kinases.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 49 条
[1]   An overview of membrane transport proteins in Saccharomyces cerevisiae [J].
Andre, B .
YEAST, 1995, 11 (16) :1575-1611
[2]   STUDIES ON THE MECHANISM OF THE GLUCOSE-INDUCED CAMP SIGNAL IN GLYCOLYSIS AND GLUCOSE REPRESSION MUTANTS OF THE YEAST SACCHAROMYCES-CEREVISIAE [J].
BEULLENS, M ;
MBONYI, K ;
GEERTS, L ;
GLADINES, D ;
DETREMERIE, K ;
JANS, AWH ;
THEVELEIN, JM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1988, 172 (01) :227-231
[3]   YEAST SUGAR TRANSPORTERS [J].
BISSON, LF ;
COONS, DM ;
KRUCKEBERG, AL ;
LEWIS, DA .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1993, 28 (04) :259-308
[4]   The molecular genetics of hexose transport in yeasts [J].
Boles, E ;
Hollenberg, CP .
FEMS MICROBIOLOGY REVIEWS, 1997, 21 (01) :85-111
[5]   High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae [J].
BoyMarcotte, E ;
Tadi, D ;
Perrot, M ;
Boucherie, H ;
Jacquet, M .
MICROBIOLOGY-UK, 1996, 142 :459-467
[6]  
Broach J R, 1990, Adv Cancer Res, V54, P79, DOI 10.1016/S0065-230X(08)60809-X
[7]   GLUCOSE-STIMULATED CAMP INCREASE MAY BE MEDIATED BY INTRACELLULAR ACIDIFICATION IN SACCHAROMYCES-CEREVISIAE [J].
CASPANI, G ;
TORTORA, P ;
HANOZET, GM ;
GUERRITORE, A .
FEBS LETTERS, 1985, 186 (01) :75-79
[8]   Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae [J].
Colombo, S ;
Ma, PS ;
Cauwenberg, L ;
Winderickx, J ;
Crauwels, M ;
Teunissen, A ;
Nauwelaers, D ;
de Winde, JH ;
Gorwa, MF ;
Colavizza, D ;
Thevelein, JM .
EMBO JOURNAL, 1998, 17 (12) :3326-3341
[9]   A METHOD FOR THE DETERMINATION OF CHANGES OF GLYCOLYTIC METABOLITES IN YEAST ON A SUBSECOND TIME SCALE USING EXTRACTION AT NEUTRAL PH [J].
DEKONING, W ;
VANDAM, K .
ANALYTICAL BIOCHEMISTRY, 1992, 204 (01) :118-123
[10]  
DeWinde JH, 1996, EUR J BIOCHEM, V241, P633