The combination of text classifiers using reliability indicators

被引:29
作者
Bennett, PN [1 ]
Dumais, ST
Horvitz, E
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[2] Microsoft Res, Redmond, WA 98052 USA
来源
INFORMATION RETRIEVAL | 2005年 / 8卷 / 01期
关键词
text classification; classifier combination; metaclassifiers; feature selection; reliability indicators;
D O I
10.1023/B:INRT.0000048491.59134.94
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The intuition that different text classifiers behave in qualitatively different ways has long motivated attempts to build a better metaclassifier via some combination of classifiers. We introduce a probabilistic method for combining classifiers that considers the context-sensitive reliabilities of contributing classifiers. The method harnesses reliability indicators - variables that provide signals about the performance of classifiers in different situations. We provide background, present procedures for building metaclassifiers that take into consideration both reliability indicators and classifier outputs, and review a set of comparative studies undertaken to evaluate the methodology.
引用
收藏
页码:67 / 100
页数:34
相关论文
共 44 条
  • [1] Al-Kofahi K., 2001, Proceedings of the 2001 ACM CIKM. Tenth International Conference on Information and Knowledge Management, P97, DOI 10.1145/502585.502603
  • [2] Bartell B. T., 1994, SIGIR '94. Proceedings of the Seventeenth Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, P173
  • [3] Belkin Nicholas J., 1993, P 16 ANN INT ACM SIG, P339
  • [4] Bennett P. N., 2002, Proceedings of SIGIR 2002. Twenty-Fifth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, P207
  • [5] BENNETT PN, 2003, WORKING NOTES ICML 0, P72
  • [6] CHICKERING DM, 1997, UAI, P80
  • [7] Ensemble methods in machine learning
    Dietterich, TG
    [J]. MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 1 - 15
  • [8] Dumais S., 1998, Proceedings of the 1998 ACM CIKM International Conference on Information and Knowledge Management, P148, DOI 10.1145/288627.288651
  • [9] Dumais Susan, 2000, SIGIR 00, P256
  • [10] GAMA J, 1998, ICML 98 P 15 INT C M, P206