Central role for Cdc45 in establishing an initiation complex of DNA replication in Xenopus egg extracts

被引:110
作者
Mimura, S [1 ]
Masuda, T [1 ]
Matsui, T [1 ]
Takisawa, H [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Biol, Osaka 5600043, Japan
关键词
D O I
10.1046/j.1365-2443.2000.00340.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: In eukaryotes, chromosomal DNA is licensed to be replicated through the sequential loading of the origin recognition complex, Cdc6 and mini-chromosome maintenance protein complex (MCM) onto chromatin. However, how the replication machinery is assembled onto the licensed chromatin during initiation of replication is poorly understood. Results: Using Xenopus egg extracts, we have investigated the role of Cdc45 in the loading of various replication proteins onto chromatin at the onset of S phase, and found that Cdc45, which required MCM for its loading, was essential for the sequential loading of replication protein A (RPA), DNA polymerase alpha and proliferating cell nuclear antigen (PCNA) onto chromatin. The assembly of DNA polymerase epsilon onto chromatin required Cdc45 but did not require DNA polymerase alpha. Analysis of nuclease-digested chromatin fractions shows that Cdc45 formed a stable complex with either MCM or DNA polymerase alpha on chromatin. Conclusions: These results demonstrate a central role for Cdc45 in activation of the licensed chromatin to form replication complexes at the onset of S phase, and suggest that Cdc45 has a dual role in the initiation of DNA replication: the unwinding of DNA and the recruiting of DNA polymerases onto DNA.
引用
收藏
页码:439 / 452
页数:14
相关论文
共 39 条
[1]   IDENTIFICATION OF NUCLEAR PREREPLICATION CENTERS POISED FOR DNA-SYNTHESIS IN XENOPUS EGG EXTRACTS - IMMUNOLOCALIZATION STUDY OF REPLICATION PROTEIN-A [J].
ADACHI, Y ;
LAEMMLI, UK .
JOURNAL OF CELL BIOLOGY, 1992, 119 (01) :1-15
[2]   STUDY OF THE CELL CYCLE-DEPENDENT ASSEMBLY OF THE DNA PRE-REPLICATION CENTERS IN XENOPUS EGG EXTRACTS [J].
ADACHI, Y ;
LAEMMLI, UK .
EMBO JOURNAL, 1994, 13 (17) :4153-4164
[3]   Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication [J].
Aparicio, OM ;
Stout, AM ;
Bell, SP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :9130-9135
[4]   Components and dynamics of DNA replication complexes in S-cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase [J].
Aparicio, OM ;
Weinstein, DM ;
Bell, SP .
CELL, 1997, 91 (01) :59-69
[5]   Polymerases and the replisome: Machines within machines [J].
Baker, TA ;
Bell, SP .
CELL, 1998, 92 (03) :295-305
[6]   Mutational effect of fission yeast Polα on cell cycle events [J].
Bhaumik, D ;
Wang, TSF .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (08) :2107-2123
[7]   BINDING AND UNWINDING - HOW T-ANTIGEN ENGAGES THE SV40 ORIGIN OF DNA-REPLICATION [J].
BOROWIEC, JA ;
DEAN, FB ;
BULLOCK, PA ;
HURWITZ, J .
CELL, 1990, 60 (02) :181-184
[8]  
CHALLBERG MD, 1989, ANNU REV BIOCHEM, V58, P671
[9]   Characterization of Cdc47p-minichromosome maintenance complexes in Saccharomyces cerevisiae: Identification of Cdc45p as a subunit [J].
Dalton, S ;
Hopwood, B .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (10) :5867-5875
[10]   Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain [J].
Dua, R ;
Levy, DL ;
Campbell, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22283-22288