Robustness of ML estimators of location-scale mixtures

被引:2
作者
Hennig, C [1 ]
机构
[1] Univ Hamburg, SPST, Fachbereich Math, D-20146 Hamburg, Germany
来源
INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS | 2005年
关键词
D O I
10.1007/3-540-26981-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The robustness of ML estimators for mixture models with fixed and estimated number of components s is investigated by the definition and computation of a breakdown point for mixture model parameters and by considering some artificial examples. The ML estimator of the Normal mixture model is compared with the approach of adding a "noise component" (Fraley and Raftery (1998)) and by mixtures of t-distributions (Peel and McLachlan (2000)). It turns out that the estimation of the number of mixture components is crucial for breakdown robustness. To attain robustness for fixed s, the addition of an improper noise component is proposed. A guideline to choose a lower scale bound is given.
引用
收藏
页码:128 / 137
页数:10
相关论文
共 13 条
[1]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[2]   THE IDENTIFICATION OF MULTIPLE OUTLIERS [J].
DAVIES, L ;
GATHER, U .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :782-792
[3]  
DONOHO DL, 1983, FESTSCHRIFT EL LEHMA, P157
[4]   How many clusters? Which clustering method? Answers via model-based cluster analysis [J].
Fraley, C ;
Raftery, AE .
COMPUTER JOURNAL, 1998, 41 (08) :578-588
[5]  
Gallegos MT, 2003, STUD CLASS DATA ANAL, P58
[6]   Robustness properties of k means and trimmed k means [J].
García-Escudero, LA ;
Gordaliza, A .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) :956-969
[7]   GENERAL QUALITATIVE DEFINITION OF ROBUSTNESS [J].
HAMPEL, FR .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06) :1887-&
[8]  
HENNIG C, 2002, IN PRESS ANN STAT
[9]  
KHARIN Y., 1996, ROBUSTNESS STAT PATT
[10]  
MCLACHLAN G., 2000, WILEY SER PROB STAT, DOI 10.1002/0471721182