A genetic estimation algorithm for parameters of stochastic ordinary differential equations

被引:8
作者
Alcock, J [1 ]
Burrage, K [1 ]
机构
[1] Univ Queensland, Dept Math, Adv Computat Modelling Ctr, St Lucia, Qld 4072, Australia
关键词
Stochastic ordinary differential equations; parameter estimation; genetic algorithms; jump-diffusion equations;
D O I
10.1016/j.csda.2003.11.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:255 / 275
页数:21
相关论文
共 26 条
[1]  
Aït-Sahalia Y, 2002, J BUS ECON STAT, V20, P317, DOI 10.1198/073500102288618405
[2]   Maximum likelihood estimation of discretely sampled diffusions:: A closed-form approximation approach [J].
Aït-Sahalia, Y .
ECONOMETRICA, 2002, 70 (01) :223-262
[3]  
AITSAHALIA Y, 2002, J BUS ECON STAT, V20, P297
[4]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[5]  
Billingsley P., 1961, STAT INFERENCE MARKO
[6]  
Clewlow L., 2000, ENERGY DERIVATIVES P
[7]  
Dacunha-Castelle D., 1986, Stochastics, V19, P263, DOI 10.1080/17442508608833428
[8]  
DEJONG KA, 1988, MACHINE LEARNING
[9]   Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes [J].
Durham, GB ;
Gallant, AR .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2002, 20 (03) :297-316
[10]   MCMC analysis of diffusion models with application to finance [J].
Eraker, B .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2001, 19 (02) :177-191