On the law of large numbers for (geometrically) ergodic Markov chains

被引:23
作者
Tolver Jensen, Soren [1 ]
Rahbek, Anders [1 ]
机构
[1] Univ Copenhagen, Inst Math Sci, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1017/S0266466607070326
中图分类号
F [经济];
学科分类号
02 ;
摘要
For use in asymptotic analysis of nonlinear time series models, we show that with (X-t, t >= 0) a (geometrically) ergodic Markov chain, the general version of the strong law of large numbers applies. That is, the average (1/T) Sigma(T-1)(t=O) phi(X-t,Xt+1,...) converges almost surely to the expectation of phi(XtXt+1,....) irrespective of the choice of initial distribution of, or value of, X-0. In the existing literature, the less general form (1/T) Sigma(T-1)(t=0) phi(X-t) has been studied.
引用
收藏
页码:761 / 766
页数:6
相关论文
共 23 条
[1]   LAWS OF LARGE NUMBERS FOR DEPENDENT NON-IDENTICALLY DISTRIBUTED RANDOM-VARIABLES [J].
ANDREWS, DWK .
ECONOMETRIC THEORY, 1988, 4 (03) :458-467
[2]  
Billingsley P., 1961, STAT INFERENCE MARKO
[3]   Instrumental variable estimation of a threshold model [J].
Caner, M ;
Hansen, BE .
ECONOMETRIC THEORY, 2004, 20 (05) :813-843
[4]   Mixing and moment properties of various GARCH and stochastic volatility models [J].
Carrasco, M ;
Chen, XH .
ECONOMETRIC THEORY, 2002, 18 (01) :17-39
[5]  
DAVIDSON J., 1994, Advanced Texts in Econometrics
[6]  
DOUKHAN P, 1995, LECT NOTES STAT, V85
[7]   Strong consistency of estimators for multivariate ARCH models [J].
Jeantheau, T .
ECONOMETRIC THEORY, 1998, 14 (01) :70-86
[8]   Asymptotic inference for nonstationary GARCH [J].
Jensen, ST ;
Rahbek, A .
ECONOMETRIC THEORY, 2004, 20 (06) :1203-1226
[9]   Asymptotic normality of the QMLE estimator of arch in the nonstationary case [J].
Jensen, ST ;
Rahbek, A .
ECONOMETRICA, 2004, 72 (02) :641-646
[10]   Asymptotics of the QMLE for a class of ARCH(q) models [J].
Kristensen, D ;
Rahbek, A .
ECONOMETRIC THEORY, 2005, 21 (05) :946-961