Two conformational states of β-lactamase bound to GroEL:: A biophysical characterization

被引:22
作者
Gervasoni, P [1 ]
Gehrig, P [1 ]
Plückthun, A [1 ]
机构
[1] Univ Zurich, Inst Biochem, CH-8057 Zurich, Switzerland
关键词
molecular chaperones; protein folding; beta-lactamase; hydrogen/deuterium exchange; mass spectrometry;
D O I
10.1006/jmbi.1997.1481
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Escherichia coli RTEM beta-lactamase, in which both cysteine residues which form the single disulfide bond have been mutated to alanine residues, can form stable reversible complexes with GroEL under two different sets of conditions. Starting with the GdmCl-denatured enzyme, it is bound to GroEL in a state where no protons are protected against exchange with (H2O)-H-2, as determined by electrospray ionization mass spectrometry (ESI-MS). Ln contrast, when native protein is destabilized at high temperature and added to GroEL, a conformation is bound with 18 protected protons after two hours of exchange. While the high-temperature complex can form both with the wild-type enzyme (with intact disulfide bond) and the Cys-Ala double mutant, only the latter protein can form a complex starting from GdmCl denatured states. Thus, two different sets of conformations of the same protein can be bound, depending both on the conditions used to form the complex and on the intrinsic stability of the intermediate recognized by GroEL, and we have characterized the properties of both complexes. (C) 1998 Academic Press Limited.
引用
收藏
页码:663 / 675
页数:13
相关论文
共 61 条
[1]  
AUNE KC, 1967, J BIOL CHEM, V242, P4486
[2]   BINDING OF A CHAPERONIN TO THE FOLDING INTERMEDIATES OF LACTATE-DEHYDROGENASE [J].
BADCOE, IG ;
SMITH, CJ ;
WOOD, S ;
HALSALL, DJ ;
HOLBROOK, JJ ;
LUND, P ;
CLARKE, AR .
BIOCHEMISTRY, 1991, 30 (38) :9195-9200
[3]   TRANSIENT ASSOCIATION OF NEWLY SYNTHESIZED UNFOLDED PROTEINS WITH THE HEAT-SHOCK GROEL PROTEIN [J].
BOCHKAREVA, ES ;
LISSIN, NM ;
GIRSHOVICH, AS .
NATURE, 1988, 336 (6196) :254-257
[4]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[5]   A POLYPEPTIDE BOUND BY THE CHAPERONIN GROEL IS LOCALIZED WITHIN A CENTRAL CAVITY [J].
BRAIG, K ;
SIMON, M ;
FURUYA, F ;
HAINFELD, JF ;
HORWICH, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (09) :3978-3982
[6]   CONFORMATIONAL VARIABILITY IN THE REFINED STRUCTURE OF THE CHAPERONIN GROEL AT 2.8 ANGSTROM RESOLUTION [J].
BRAIG, K ;
ADAMS, PD ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (12) :1083-1094
[7]   Model peptide studies demonstrate that amphipathic secondary structures can be recognized by the chaperonin GroEL (cpn60) [J].
Brazil, BT ;
Cleland, JL ;
McDowell, RS ;
Skelton, NJ ;
Paris, K ;
Horowitz, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (08) :5105-5111
[8]   A structural model for GroEL-polypeptide recognition [J].
Buckle, AM ;
Zahn, R ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :3571-3575
[9]   LOCATION OF A FOLDING PROTEIN AND SHAPE CHANGES IN GROEL-GROES COMPLEXES IMAGED BY CRYOELECTRON MICROSCOPY [J].
CHEN, S ;
ROSEMAN, AM ;
HUNTER, AS ;
WOOD, SP ;
BURSTON, SG ;
RANSON, NA ;
CLARKE, AR ;
SAIBIL, HR .
NATURE, 1994, 371 (6494) :261-264
[10]   Hydrogen exchange properties of proteins in native and denatured states monitored by mass spectrometry and NMR [J].
Chung, EW ;
Nettleton, EJ ;
Morgan, CJ ;
Gross, M ;
Miranker, A ;
Radford, SE ;
Dobson, CM ;
Robinson, CV .
PROTEIN SCIENCE, 1997, 6 (06) :1316-1324