Radial basis function approach to nonlinear Granger causality of time series

被引:152
作者
Ancona, N [1 ]
Marinazzo, D
Stramaglia, S
机构
[1] CNR, Ist Studi sistemi Intelligenti Automaz, Bari, Italy
[2] Univ Bari, TIRES Ctr Innovat Technol Signal Detect & Proc, Bari, Italy
[3] Dipartimento Interateneo Fis, Bari, Italy
[4] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
来源
PHYSICAL REVIEW E | 2004年 / 70卷 / 05期
关键词
D O I
10.1103/PhysRevE.70.056221
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider an extension of Granger causality to nonlinear bivariate time series. In this frame. if the prediction error of the first time series is reduced by including measurements from the second time series, then the second time series is said to have a causal influence on the first one. Not all the nonlinear prediction schemes are suitable to evaluate causality indeed, not all of them allow one to quantify how much knowledge of the other time series counts to improve prediction error. We present an approach with bivariate time series modeled by a generalization of radial basis functions and show its application to a pair of unidirectionally coupled chaotic maps and to physiological examples.
引用
收藏
页码:7 / 1
页数:7
相关论文
共 29 条
[1]   HEMODYNAMIC REGULATION - INVESTIGATION BY SPECTRAL-ANALYSIS [J].
AKSELROD, S ;
GORDON, D ;
MADWED, JB ;
SNIDMAN, NC ;
SHANNON, DC ;
COHEN, RJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1985, 249 (04) :H867-H875
[2]  
[Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
[3]   A robust method for detecting interdependences: application to intracranially recorded EEG [J].
Arnhold, J ;
Grassberger, P ;
Lehnertz, K ;
Elger, CE .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 134 (04) :419-430
[4]  
Bishop C. M., 1996, Neural networks for pattern recognition
[5]   Analyzing multiple nonlinear time series with extended Granger causality [J].
Chen, YH ;
Rangarajan, G ;
Feng, JF ;
Ding, MZ .
PHYSICS LETTERS A, 2004, 324 (01) :26-35
[6]   Asymptotically stable phase synchronization revealed by autoregressive circle maps [J].
Drepper, FR .
PHYSICAL REVIEW E, 2000, 62 (05) :6376-6382
[7]  
DUCHNA HW, 2003, SOMNOLOGIE, V7, P101
[8]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[9]   INVESTIGATING CAUSAL RELATIONS BY ECONOMETRIC MODELS AND CROSS-SPECTRAL METHODS [J].
GRANGER, CWJ .
ECONOMETRICA, 1969, 37 (03) :424-438
[10]   Nonlinear interdependencies of EEG signals in human intracranially recorded temporal lobe seizures [J].
Le van Quyen, M ;
Adam, C ;
Baulac, M ;
Martinerie, J ;
Varela, FJ .
BRAIN RESEARCH, 1998, 792 (01) :24-40