On the inversion of the Laplace transform by the use of a regularized displacement operator

被引:6
作者
AlShuaibi, A
机构
[1] KFUPM Box 449
关键词
D O I
10.1088/0266-5611/13/5/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a numerical method for approximating f, given its Laplace transform g on (0, infinity), i.e. integral(0)(infinity)f(t)e(-st) dt = g(s) assuming that g is in L-2(0, infinity). The method is based on the Tichonov regularization operator. This operator is approximated by a finite-dimensional displacement operator. Convergence of the method, together with some examples, will be given.
引用
收藏
页码:1153 / 1160
页数:8
相关论文
共 14 条
[1]  
ALSHUAIBI A, 1997, APPROX THEOR APPL, V13, P58
[2]  
ANG D, 1989, MATH COMPUT, V188, P589
[3]   THE LAGUERRE FUNCTIONS IN THE INVERSION OF THE LAPLACE TRANSFORM [J].
CUNHA, C ;
VILOCHE, F .
INVERSE PROBLEMS, 1993, 9 (01) :57-68
[4]   NUMERICAL INVERSION OF THE LAPLACE TRANSFORM - SURVEY AND COMPARISON OF METHODS [J].
DAVIES, B ;
MARTIN, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (01) :1-32
[5]   ON THE NUMERICAL INVERSION OF THE LAPLACE TRANSFORM [J].
ESSAH, WA ;
DELVES, LM .
INVERSE PROBLEMS, 1988, 4 (03) :705-724
[6]  
Ivanov V.V, 1976, The Theory of Approximate Methods
[7]  
LUND J, 1992, SINC METHODS
[8]  
LYNESS JN, 1986, MATH COMPUT, V47, P313, DOI 10.1090/S0025-5718-1986-0842138-1
[9]  
MOTTONI PD, 1981, NUMER FUNCT ANAL OPT, V3, P265
[10]  
*NBS, 1964, APPL MATH SER, V55