Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function

被引:108
作者
Lin, Zhidong
Johnson, Lynnette C.
Weissbach, Herbert [1 ]
Brot, Nathan
Lively, Mark O.
Lowther, W. Todd
机构
[1] Wake Forest Univ, Sch Med, Dept Biochem, Ctr Struct Biol, Winston Salem, NC 27157 USA
[2] Florida Atlantic Univ, Ctr Mol Biol & Biotechnnol, Boca Raton, FL 33431 USA
[3] Cornell Univ, Weill Med Coll, Dept Microbiol & Immunol, New York, NY 10021 USA
关键词
methionine oxidation; methionine sulfoxide reductase;
D O I
10.1073/pnas.0703774104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The reduction of methionine sulfoxide (MetO) is mediated by methionine sulfoxide reductases (Msr). The MsrA and MsrB families can reduce free MetO and MetO within a peptide or protein context. This process is stereospecific with the S- and R-forms of MetO repaired by MsrA and MsrB, respectively. Cell extracts from an MsrA(-)B(-) knockout of Escherichia coli have several remaining Msr activities. This study has identified an enzyme specific for the free form of Met-(R)-O, fRMsr, through proteomic analysis. The recombinant enzyme exhibits the same substrate specificity and is as active as MsrA family members. E. coli fRMsr is, however, 100- to 1,000-fold more active than non-selenocysteine-containing MsrB enzymes for free Met-(R)-O. The crystal structure of E. coli fRMsr was previously determined, but no known function was assigned. Thus, the function of this protein has now been determined. The structural similarity of the E. coli and yeast proteins suggests that most fRMsrs use three cysteine residues for catalysis and the formation of a disulfide bond to enclose a small active site cavity. This latter feature is most likely a key determinant of substrate specificity. Moreover, E. coli fRMsr is the first GAF domain family member to show enzymatic activity. Other GAF domain proteins substitute the Cys residues and others to specifically bind cyclic nucleotides, chromophores, and many other ligands for signal potentiation. Therefore, Met-(R)-O may represent a signaling molecule in response to oxidative stress and nutrients via the TOR pathway in some organisms.
引用
收藏
页码:9597 / 9602
页数:6
相关论文
共 50 条
[1]   The GAF domain: an evolutionary link between diverse phototransducing proteins [J].
Aravind, L ;
Ponting, CP .
TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (12) :458-459
[2]   Structural analysis of a set of proteins resulting from a bacterial genomics project [J].
Badger, J ;
Sauder, JM ;
Adams, JM ;
Antonysamy, S ;
Bain, K ;
Bergseid, MG ;
Buchanan, SG ;
Buchanan, MD ;
Batiyenko, Y ;
Christopher, JA ;
Emtage, S ;
Eroshkina, A ;
Feil, I ;
Furlong, EB ;
Gajiwala, KS ;
Gao, X ;
He, D ;
Hendle, J ;
Huber, A ;
Hoda, K ;
Kearins, P ;
Kissinger, C ;
Laubert, B ;
Lewis, HA ;
Lin, J ;
Loomis, K ;
Lorimer, D ;
Louie, G ;
Maletic, M ;
Marsh, CD ;
Miller, I ;
Molinari, J ;
Muller-Dieckmann, HJ ;
Newman, JM ;
Noland, BW ;
Pagarigan, B ;
Park, F ;
Peat, TS ;
Post, KW ;
Radojicic, S ;
Ramos, A ;
Romero, R ;
Rutter, ME ;
Sanderson, WE ;
Schwinn, KD ;
Tresser, J ;
Winhoven, J ;
Wright, TA ;
Wu, L ;
Xu, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 60 (04) :787-796
[3]   Mouse methionine sulfoxide reductase B: effect of selenocysteine incorporation on its activity and expression of the seleno-containing enzyme in bacterial and mammalian cells [J].
Bar-Noy, S ;
Moskovitz, J .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2002, 297 (04) :956-961
[4]   A sulfenic acid enzyme intermediate is involved in the catalytic mechanism of peptide methionine sulfoxide reductase from Escherichia coli [J].
Boschi-Muller, S ;
Azza, S ;
Sanglier-Cianferani, S ;
Talfournier, F ;
Van Dorsselear, A ;
Branlant, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (46) :35908-35913
[5]   The enzymology and biochemistry of methionine sulfoxide reductases [J].
Boschi-Muller, S ;
Olry, A ;
Antoine, M ;
Branlant, G .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2005, 1703 (02) :231-238
[6]   E-coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide [J].
Boschi-Muller, S ;
Azza, S ;
Branlant, G .
PROTEIN SCIENCE, 2001, 10 (11) :2272-2279
[7]   ENZYMATIC REDUCTION OF PROTEIN-BOUND METHIONINE SULFOXIDE [J].
BROT, N ;
WEISSBACH, L ;
WERTH, J ;
WEISSBACH, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1981, 78 (04) :2155-2158
[8]  
Brot N, 2000, BIOPOLYMERS, V55, P288, DOI 10.1002/1097-0282(2000)55:4<288::AID-BIP1002>3.0.CO
[9]  
2-M
[10]   The thioredoxin domain of Neisseria gonorrhoeae PiIB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases [J].
Brot, Nathan ;
Collet, Jean-Francois ;
Johnson, Lynnette C. ;
Joensoon, Thomas J. ;
Weissbach, Herbert ;
Lowther, W. Todd .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (43) :32668-32675