RAPID AND ROBUST HUMAN DETECTION AND TRACKING BASED ON OMEGA-SHAPE FEATURES

被引:38
作者
Li, Min [1 ]
Zhang, Zhaoxiang [1 ]
Huang, Kaiqi [1 ]
Tan, Tieniu [1 ]
机构
[1] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100864, Peoples R China
来源
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6 | 2009年
关键词
head-shoulder detection; tracking; HOG;
D O I
10.1109/ICIP.2009.5414008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel method for rapid and robust human detection and tracking based on the omega-shape features of people's head-shoulder parts. There are two modules in this method. In the first module, a Viola-Jones type classifier and a local HOG (Histograms of Oriented Gradients) feature based AdaBoost classifier are combined to detect head-shoulders rapidly and effectively. Then, in the second module, each detected head-shoulder is tracked by a particle filter tracker using local HOG features to model target's appearance, which shows great robustness in scenarios of crowding, background distractors and partial occlusions. Experimental results demonstrate the effectiveness and efficiency of the proposed approach.
引用
收藏
页码:2545 / 2548
页数:4
相关论文
共 11 条
[1]  
[Anonymous], DEMOS
[2]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[3]   Online selection of discriminative tracking features [J].
Collins, RT ;
Liu, YX ;
Leordeanu, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (10) :1631-1643
[4]  
COMANICIU D, 2000, P CVPR 00
[5]  
Dalal N., 2005, P CVPR 05
[6]  
JIN Y, 2005, IEEE INT WORKSH VS P
[7]  
LI M, 2008, P ICPR 08
[8]  
QU W, 2005, P ICASSP 05
[9]  
Viola P., 2001, P CVPR 01
[10]  
WU B, 2006, P CVPRW 06