Room-temperature surface-erosion route to ZnO nanorod arrays and urchin-like assemblies

被引:72
作者
Li, ZQ
Ding, Y
Xiong, YJ
Yang, Q [1 ]
Xie, Y
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Chem, Hefei 230026, Anhui, Peoples R China
关键词
nanorods; nanostructures; surface analysis; surface erosion; zinc oxide;
D O I
10.1002/chem.200400498
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A solution surface-erosion route was successfully employed to produce one-dimensional (1D) ZnO nanostructures. ZnO nanorod arrays and three-dimensional urchin-like assemblies could be selectively obtained with different manipulations. In this process, zinc foil was introduced to an organic solution system and acted both as a reactant and substrate to support the 1D nanostructures obtained. This method, without any template, apparatus, surfactants, or additional heterogenous substrates, has greatly simplified the preparation of oriented 1D ZnO nanostructures. In particular, this simple route could be carried out at room temperature over a period as short as several minutes, thus it could be conveniently transferred to industrial applications. The possible formation mechanism, erosion process, and influence factors were also investigated.
引用
收藏
页码:5823 / 5828
页数:6
相关论文
共 50 条
[1]   ZnO as a novel photonic material for the UV region [J].
Chen, YF ;
Bagnall, D ;
Yao, TF .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2000, 75 (2-3) :190-198
[2]   Hydrothermal route to ZnO nanocoral reefs and nanofibers [J].
Choy, JH ;
Jang, ES ;
Won, JH ;
Chung, JH ;
Jang, DJ ;
Kim, YW .
APPLIED PHYSICS LETTERS, 2004, 84 (02) :287-289
[3]   Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser [J].
Choy, JH ;
Jang, ES ;
Won, JH ;
Chung, JH ;
Jang, DJ ;
Kim, YW .
ADVANCED MATERIALS, 2003, 15 (22) :1911-+
[4]   Epitaxial ZnO piezoelectric thin films for saw filters [J].
Emanetoglu, NW ;
Gorla, C ;
Liu, Y ;
Liang, S ;
Lu, Y .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 1999, 2 (03) :247-252
[5]   Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films [J].
Feng, XJ ;
Feng, L ;
Jin, MH ;
Zhai, J ;
Jiang, L ;
Zhu, DB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (01) :62-63
[6]   Structural, electrical and optical properties of zinc nitride thin films prepared by reactive rf magnetron sputtering [J].
Futsuhara, M ;
Yoshioka, K ;
Takai, O .
THIN SOLID FILMS, 1998, 322 (1-2) :274-281
[7]  
GAO L, 2004, J AM CHEM SOC, V126, P14864
[8]   Nanopropeller arrays of zinc oxide [J].
Gao, PX ;
Wang, ZL .
APPLIED PHYSICS LETTERS, 2004, 84 (15) :2883-2885
[9]   Sensor photoresponse of thin-film oxides of zinc and titanium to oxygen gas [J].
Golego, N ;
Studenikin, SA ;
Cocivera, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1592-1594
[10]  
Govender K, 2002, ADV MATER, V14, P1221, DOI 10.1002/1521-4095(20020903)14:17<1221::AID-ADMA1221>3.0.CO