The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis

被引:93
作者
Tanaka, H
Ishikawa, M
Kitamura, S
Takahashi, Y
Soyano, T
Machida, C
Machida, Y [1 ]
机构
[1] Nagoya Univ, Grad Sch Sci, Div Biol Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan
[2] Chubu Univ, Coll Biosci & Biotechnol, Aichi 4878501, Japan
[3] Japan Sci & Technol Corp, CREST, Aichi 4878501, Japan
关键词
D O I
10.1111/j.1365-2443.2004.00798.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cytokinesis is the critical step during which daughter cells are separated. We showed previously that a protein complex that consists of NACK1 (and NACK2) kinesin-like protein and NPK1 MAPKKK and its substrate NQK1 MAPKK are required for progression of cytokinesis in Nicotiana tabacum. The genome of Arabidopsis thaliana encodes homologues of NACK1 and NACK2, namely, AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2, respectively. Loss-of-function mutations in AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 result in the occasional failure of somatic and male-meiotic cytokinesis, respectively. However, it is likely that these genes function redundantly to some extent in somatic tissues and female gametogenesis. We describe the phenotypes of Arabidopsis plants that have mutations in both the AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes. These phenotypes suggest that the two genes are essential during both male and female gametogenesis. Female gametes with atnack1 atnack2 double mutations failed to cellularize and to generate a central cell, synergids and the egg cells. Male gametes with atnack1 atnack2 mutations were also not transmitted to the next generation. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes for kinesin-like proteins have overlapping functions that are essential for gametogenetic cytokinesis. They appear to be essential components of a MAP kinase cascade that promotes cytokinesis of plant cells in both gametophytic (haploid) and sporophytic (diploid) proliferation.
引用
收藏
页码:1199 / 1211
页数:13
相关论文
共 39 条
[1]   Genes involved in organ separation in Arabidopsis: An analysis of the cup-shaped cotyledon mutant [J].
Aida, M ;
Ishida, T ;
Fukaki, H ;
Fujisawa, H ;
Tasaka, M .
PLANT CELL, 1997, 9 (06) :841-857
[2]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[3]   NPK1, A TOBACCO GENE THAT ENCODES A PROTEIN WITH A DOMAIN HOMOLOGOUS TO YEAST BCK1, STE11, AND BYR2 PROTEIN-KINASES [J].
BANNO, H ;
HIRANO, K ;
NAKAMURA, T ;
IRIE, K ;
NOMOTO, S ;
MATSUMOTO, K ;
MACHIDA, Y .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (08) :4745-4752
[4]   Cell division: Plant-like properties of animal cell cytokinesis [J].
Bowerman, B ;
Severson, AF .
CURRENT BIOLOGY, 1999, 9 (17) :R658-R660
[5]   Identification of gametophytic mutations affecting female gametophyte development in Arabidopsis [J].
Christensen, CA ;
Subramanian, S ;
Drews, GN .
DEVELOPMENTAL BIOLOGY, 1998, 202 (01) :136-151
[6]   Megagametogenesis in Arabidopsis wild type and the Gf mutant [J].
Christensen, CA ;
King, EJ ;
Jordan, JR ;
Drews, GN .
SEXUAL PLANT REPRODUCTION, 1997, 10 (01) :49-64
[7]   Genetic analysis of female gametophyte development and function [J].
Drews, GN ;
Lee, D ;
Christensen, GA .
PLANT CELL, 1998, 10 (01) :5-17
[8]   PATTERNS OF CELL-DIVISION REVEALED BY TRANSCRIPTIONAL REGULATION OF GENES DURING THE CELL-CYCLE IN PLANTS [J].
FOBERT, PR ;
COEN, ES ;
MURPHY, GJP ;
DOONAN, JH .
EMBO JOURNAL, 1994, 13 (03) :616-624
[9]   PLANT EMBRYOGENESIS - ZYGOTE TO SEED [J].
GOLDBERG, RB ;
DEPAIVA, G ;
YADEGARI, R .
SCIENCE, 1994, 266 (5185) :605-614
[10]   Mutations in the WUSCHEL gene of Arabidopsis thaliana result in the development of shoots without juvenile leaves [J].
Hamada, S ;
Onouchi, H ;
Tanaka, H ;
Kudo, M ;
Liu, YG ;
Shibata, D ;
Machida, C ;
Machida, Y .
PLANT JOURNAL, 2000, 24 (01) :91-101