Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers

被引:73
作者
Schaechinger, Thorsten J. [1 ]
Oliver, Dominik [1 ]
机构
[1] Univ Freiburg, Inst Physiol 2, D-79104 Freiburg, Germany
关键词
anion transporter; cochlea; electromotility;
D O I
10.1073/pnas.0608583104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Individual members of the mammalian SLC26 anion transporter family serve two fundamentally distinct functions. Whereas most members transport different anion substrates across a variety of epithelia, prestin (SLC26A5) is special, functioning as a membrane-localized motor protein that generates electrically induced motions (electromotility) in auditory sensory hair cells of the mammalian inner ear. The transport mechanism of SLC26 proteins is not well understood, and a mechanistic relation between anion transport and electromotility has been suggested but not firmly established so far. To address these questions, we have cloned prestin orthologs from chicken and zebrafish, nonmammalian vertebrates that presumably lack electromotility in their auditory systems. Using patch-clamp recordings, we show that these prestin orthologs, but not mammalian prestin, generate robust transport currents in the presence of the divalent anions sulfate or oxalate. Transport is blocked by salicylate, an inhibitor of electromotility generated by mammalian prestin. The dependence of transport equilibrium potentials on sulfate and chloride concentration gradients shows that the prestin orthologs are electrogenic antiporters, exchanging sulfate or oxalate for chloride in a strictly coupled manner with a 1:1 stoichiometry. These data identify transport mode and stoichiometry of electrogenic divalent/ monovalent anion exchange and establish a reliable and simple method for the quantitative determination of the various transport modes that have been proposed for other SLC26 transport proteins. Moreover, the sequence conservation between mammalian and nonmammalian prestin together with a common pharmacology of electromotility and divalent antiport suggest that the molecular mechanism behind electromotility is closely related to an anion transport cycle.
引用
收藏
页码:7693 / 7698
页数:6
相关论文
共 43 条
[1]   Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels [J].
Accardi, A ;
Miller, C .
NATURE, 2004, 427 (6977) :803-807
[2]  
ALBERT JT, 2007, J PHYSIOL-LONDON, DOI DOI 10.1113/PHYSIOL.2007.127993
[3]  
BISSIG M, 1994, J BIOL CHEM, V269, P3017
[4]   EVOKED MECHANICAL RESPONSES OF ISOLATED COCHLEAR OUTER HAIR-CELLS [J].
BROWNELL, WE ;
BADER, CR ;
BERTRAND, D ;
DERIBAUPIERRE, Y .
SCIENCE, 1985, 227 (4683) :194-196
[5]   Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants - Differences in anion selectivity, regulation, and electrogenicity [J].
Chernova, MN ;
Jiang, LW ;
Friedman, DJ ;
Darman, RB ;
Lohi, H ;
Kere, J ;
Vandorpe, DH ;
Alper, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (09) :8564-8580
[6]   Prestin, a new type of motor protein [J].
Dallos, P ;
Fakler, B .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (02) :104-111
[7]   NATURE OF THE MOTOR ELEMENT IN ELECTROKINETIC SHAPE CHANGES OF COCHLEAR OUTER HAIR-CELLS [J].
DALLOS, P ;
EVANS, BN ;
HALLWORTH, R .
NATURE, 1991, 350 (6314) :155-157
[8]  
DARLING IM, 1994, DRUG METAB DISPOS, V22, P318
[9]   Pathogenetics of the human SLC26 transporters [J].
Dawson, PA ;
Markovich, D .
CURRENT MEDICINAL CHEMISTRY, 2005, 12 (04) :385-396
[10]   VOLTAGE DEPENDENCE OF THE NA-K PUMP [J].
DEWEER, P ;
GADSBY, DC ;
RAKOWSKI, RF .
ANNUAL REVIEW OF PHYSIOLOGY, 1988, 50 :225-241