Trafficking patterns of β-arrestin and G protein-coupled receptors determined by the kinetics of β-arrestin deubiquitination

被引:186
作者
Shenoy, SK
Lefkowitz, RJ
机构
[1] Duke Univ, Med Ctr, Dept Med, Howard Hughes Med Inst, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
关键词
D O I
10.1074/jbc.M209626200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Agonist-dependent internalization of G protein-coupled receptors via clathrin-coated pits is dependent on the adaptor protein beta-arrestin, which interacts with elements of the endocytic machinery such as AP2 and clathrin. For the beta(2)-adrenergic receptor (beta(2)AR) this requires ubiquitination of beta-arrestin by E3 ubiquitin ligase, Mdm2. Based on trafficking patterns and affinity of beta-arrestin, G protein-coupled receptors are categorized into two classes. For class A receptors (e.g. beta(2)AR), which recycle rapidly, beta-arrestin directs the receptors to clathrin-coated pits but does not internalize with them. For class B receptors (e.g. V2 vasopressin receptors), which recycle slowly, beta-arrestin internalizes with the receptor into endosomes. In COS-7 and human embryonic kidney (HEK)-293 cells, stimulation of the beta(2)AR or V2 vasopressin receptor leads, respectively, to transient or stable beta-arrestin ubiquitination. The time course of ubiquitination and deubiquitination of beta-arrestin correlates with its association with and dissociation from each type of receptor. Chimeric receptors, constructed by switching the cytoplasmic tails of the two classes of receptors (beta(2)AR and V2 vasopressin receptors), demonstrate reversal of the patterns of both beta-arrestin trafficking and beta-arrestin ubiquitination. To explore the functional consequences of beta-arrestin ubiquitination we constructed a yellow fluorescent protein-tagged beta-arrestin2-ubiquitin chimera that cannot be deubiquitinated by cellular deubiquitinases. This "permanently ubiquitinated" beta-arrestin did not dissociate from the beta(2)AR but rather internalized with it into endosomes, thus transforming this class A receptor into a class B receptor with respect to its trafficking pattern. Overexpression of this beta-arrestin ubiquitin chimera in HEK-293 cells also results in enhancement of beta(2)AR internalization and degradation. In the presence of N-ethylmaleimide (an inhibitor of deubiquitinating enzymes), coimmunoprecipitation of the receptor and beta-arrestin was increased dramatically, suggesting that deubiquitination of beta-arrestin triggers its dissociation from the receptor. Thus the ubiquitination status of beta-arrestin determines the stability of the receptor-beta-arrestin complex as well as the trafficking pattern of beta-arrestin.
引用
收藏
页码:14498 / 14506
页数:9
相关论文
共 27 条
[1]   β-arrestin-mediated ADP-ribosylation factor 6 activation and β2-adrenergic receptor endocytosis [J].
Claing, A ;
Chen, W ;
Miller, WE ;
Vitale, N ;
Moss, J ;
Premont, RT ;
Lefkowitz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :42509-42513
[2]   Binding of the β2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling [J].
Cong, M ;
Perry, SJ ;
Hu, LYA ;
Hanson, PI ;
Claing, A ;
Lefkowitz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (48) :45145-45152
[3]   Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor [J].
Govers, R ;
ten Broeke, T ;
van Kerkhof, P ;
Schwartz, AL ;
Strous, GJ .
EMBO JOURNAL, 1999, 18 (01) :28-36
[4]   The ubiquitin system [J].
Hershko, A ;
Ciechanover, A .
ANNUAL REVIEW OF BIOCHEMISTRY, 1998, 67 :425-479
[5]   Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis [J].
Hicke, L ;
Riezman, H .
CELL, 1996, 84 (02) :277-287
[6]   Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I [J].
Katzmann, DJ ;
Babst, M ;
Emr, SD .
CELL, 2001, 106 (02) :145-155
[7]   Arrestin/clathrin interaction - Localization of the clathrin binding domain of nonvisual arrestins to the carboxyl terminus [J].
Krupnick, JG ;
Goodman, OB ;
Keen, JH ;
Benovic, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) :15011-15016
[8]   The β2-adrenergic receptor/βarrestin complex recruits the clathrin adaptor AP-2 during endocytosis [J].
Laporte, SA ;
Oakley, RH ;
Zhang, J ;
Holt, JA ;
Ferguson, SSG ;
Caron, MG ;
Barak, LS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3712-3717
[9]   G protein-coupled receptors III.: New roles for receptor kinases and β-arrestins in receptor signaling and desensitization [J].
Lefkowitz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (30) :18677-18680
[10]   Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds [J].
Luttrell, LM ;
Roudabush, FL ;
Choy, EW ;
Miller, WE ;
Field, ME ;
Pierce, KL ;
Lefkowitz, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2449-2454