Ignited spherical tokamaks and plasma regimes with LiWalls

被引:51
作者
Zakharov, LE
Gorelenkov, NN
White, RB
Krasheninnikov, SI
Pereverzev, GV
机构
[1] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92093 USA
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
关键词
tokamaks; fusion reactor; ignition; first wall; tritium; DD fusion;
D O I
10.1016/j.fusengdes.2004.07.015
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Basic requirements of the fusion power reactor and its development are outlined. The notion of operational power reactor regime (OPRR) is introduced explicitly for the first time in order to distinguish it from the relatively short ignition phase of the reactor operation. Development of OPRR is intrinsically linked to two basic technology objectives, i.e., development of the first wall (FW) and the tritium cycle (TC). The paper reveals an existing fundamental gap in the reactor development path associated with the lack of necessary amounts of tritium for the reactor design development. In this regard, low recycling regimes with a plasma limited by a lithium wall surface suggest enhanced stability and energy confinement, both necessary for tokamak power reactors. These regimes also could make ignition and OPRR feasible in compact tokamaks. Ignited spherical tokamaks (IST), self-sufficient in the bootstrap current, are introduced as a necessary interim step for development OPRR-FW-TC for the power reactors. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 168
页数:20
相关论文
共 34 条
[1]   On the exploration of innovative concepts for fusion chamber technology [J].
Abdou, MA ;
Ying, A ;
Morley, N ;
Gulec, K ;
Smolentsev, S ;
Kotschenreuther, M ;
Malang, S ;
Zinkle, S ;
Rognlien, T ;
Fogarty, P ;
Nelson, B ;
Nygren, R ;
McCarthy, K ;
Youssef, MZ ;
Ghoniem, N ;
Sze, D ;
Wong, C ;
Sawan, M ;
Khater, H ;
Woolley, R ;
Mattas, R ;
Moir, R ;
Sharafat, S ;
Brooks, J ;
Hassanein, A ;
Petti, D ;
Tillack, M ;
Ulrickson, M ;
Uchimoto, T .
FUSION ENGINEERING AND DESIGN, 2001, 54 (02) :181-247
[2]   DESTABILIZATION OF TRAPPED-ELECTRON MODE BY MAGNETIC CURVATURE DRIFT RESONANCES [J].
ADAM, JC ;
TANG, WM ;
RUTHERFORD, PH .
PHYSICS OF FLUIDS, 1976, 19 (04) :561-566
[3]   Plasma-lithium interaction in the CDX-U spherical torus [J].
Antar, GY ;
Doerner, RP ;
Kaita, R ;
Majeski, R ;
Spaleta, J ;
Munsat, T ;
Jones, B ;
Maingi, R ;
Soukhanovskii, V ;
Kugel, H ;
Timberlake, J ;
Krasheninnikov, SI ;
Luckhardt, SC ;
Conn, RW .
FUSION ENGINEERING AND DESIGN, 2002, 60 (02) :157-166
[4]   Overview of ITER-FEAT - The future international burning plasma experiment [J].
Aymar, R ;
Chuyanov, VA ;
Huguet, T ;
Shimomura, Y .
NUCLEAR FUSION, 2001, 41 (10) :1301-1310
[5]  
BOOK DL, 1990, NRL PUBLICATION, P31
[6]  
BOOK DL, 1990, NRL PUBL, P57
[7]   Stabilizing impact of high gradient of β on microturbulence [J].
Bourdelle, C ;
Dorland, W ;
Garbet, X ;
Hammett, GW ;
Kotschenreuther, M ;
Rewoldt, G ;
Synakowski, EJ .
PHYSICS OF PLASMAS, 2003, 10 (07) :2881-2887
[8]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[9]  
Dorland W., 1995, Plasma Physics and Controlled Nuclear Fusion Research 1994. Proceedings of the Fifteenth International Conference on Plasma Physics and Controlled Nuclear Fusion Research, P463
[10]  
ERNST DA, 1998, NUCL FUSION, V38, P13