Endogenous dendritic cells are required for amplification of T cell responses induced by dendritic cell vaccines in vivo

被引:121
作者
Kleindienst, P [1 ]
Brocker, T [1 ]
机构
[1] Univ Munich, Inst Immunol, D-80331 Munich, Germany
关键词
D O I
10.4049/jimmunol.170.6.2817
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Dendritic cells (DCs) loaded in vitro with Ag are used as cellular vaccines to induce Ag-specific immunity. These cells are thought to be responsible for direct stimulation of Ag-specific T cells, which may subsequently mediate immunity. In this study, in transgenic mouse models with targeted MHC class II expression specifically on DO, we show that the DC vaccine is responsible only for partial CD4+ T cell activation, but to obtain optimal expansion of T cells in vivo, participation of endogenous,(resident) DO, but not endogenous B cells, is crucial. Transfer of Ag to endogenous DO seems not to be mediated by simple peptide diffusion, but rather by DC-DC interaction in lymph nodes as demonstrated by histological analysis. In contrast, injection of apoptotic or necrotic DC vaccines does not induce T cell responses, but rather represents an immunological null event, which argues that viability of DC vaccines can be crucial for initial triggering of T cells. We propose that viable DO from the DC vaccine must migrate to the draining lymph nodes and initiate a T cell response, which thereafter requires endogenous DO that present transferred Ag in order induce optimal T cell expansion. These results are of specific importance with regard to the applicability of DC vaccinations in tumor patients, where the function of endogenous DO is suppressed by either tumors or chemotherapy.
引用
收藏
页码:2817 / 2823
页数:7
相关论文
共 31 条
[1]   Dendritic cells acquire antigen from apoptotic cells and induce class I restricted CTLs [J].
Albert, ML ;
Sauter, B ;
Bhardwaj, N .
NATURE, 1998, 392 (6671) :86-89
[2]   Immature dendritic cells phagocytose apoptotic cells via αvβ5 and CD36, and cross-present antigens to cytotoxic T lymphocytes [J].
Albert, ML ;
Pearce, SFA ;
Francisco, LM ;
Sauter, B ;
Roy, P ;
Silverstein, RL ;
Bhardwaj, N .
JOURNAL OF EXPERIMENTAL MEDICINE, 1998, 188 (07) :1359-1368
[3]   Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer [J].
Almand, B ;
Clark, JI ;
Nikitina, E ;
van Beynen, J ;
English, NR ;
Knight, SC ;
Carbone, DP ;
Gabrilovich, DI .
JOURNAL OF IMMUNOLOGY, 2001, 166 (01) :678-689
[4]   MIGRATION PATTERNS OF DENDRITIC CELLS IN THE MOUSE - HOMING TO T-CELL DEPENDENT AREAS OF SPLEEN, AND BINDING WITHIN MARGINAL ZONE [J].
AUSTYN, JM ;
KUPIECWEGLINSKI, JW ;
HANKINS, DF ;
MORRIS, PJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 1988, 167 (02) :646-651
[5]   Dendritic cells and the control of immunity [J].
Banchereau, J ;
Steinman, RM .
NATURE, 1998, 392 (6673) :245-252
[6]   In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas [J].
Bell, D ;
Chomarat, P ;
Broyles, D ;
Netto, G ;
Harb, GM ;
Lebecque, S ;
Valladeau, J ;
Davoust, J ;
Palucka, KA ;
Banchereau, J .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (10) :1417-1425
[7]   Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in vivo [J].
Brocker, T ;
Riedinger, M ;
Karjalainen, K .
JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 185 (03) :541-550
[8]   Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells [J].
Brocker, T .
JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 186 (08) :1223-1232
[9]   CD8+ but not CD8- dendritic cells cross-prime cytotoxic T cells in vivo [J].
den Haan, JMM ;
Lehar, SM ;
Bevan, MJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 2000, 192 (12) :1685-1695
[10]  
Enk AH, 1997, INT J CANCER, V73, P309, DOI 10.1002/(SICI)1097-0215(19971104)73:3<309::AID-IJC1>3.3.CO