Upper bounds on the statistical distribution of the crest-factor in OFDM transmission

被引:39
作者
Wunder, G [1 ]
Boche, H [1 ]
机构
[1] Heinrich Hertz Inst Nachrichtentech Berlin GmbH, Dep Breitband Mobilfunknetze, D-10587 Berlin, Germany
关键词
binary phase-shift keying (BPSK); Chernoff bound; crest-factor; Nyquist rate; orthogonal frequency-division multiplexing (OFDM); oversampling; peak-to-average power ratio (PAPR); peak-to-mean envelope; power ratio (PMEPR); quadrature amplitude modulation (QAM);
D O I
10.1109/TIT.2002.807311
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This correspondence analyzes the crest-factor behavior of an orthogonal frequency-division multiplexing (OFDM) modem. The behavior is characterized in terms of the complementary distribution function of the crest-factor (CDFC). The CDFC is a key parameter of OFDM systems, for example it provides limits on achievable information rates. Several approximations have been developed in the literature so far, but no true upper bounds dependent on the different constellations that are used in OFDM modulation have been derived. A new approach is given providing upper bounds that substitute for time-consuming simulations.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 21 条
[1]  
[Anonymous], P 4 INT ITG C SOURC
[2]  
[Anonymous], REV ANAL NUMERIQUE T
[3]  
[Anonymous], 1973, STUDIA SCI MATH HUNG
[4]  
Bahai AhmadR.S., 1999, Multi-Carrier Digital Communications: Theory and Applications of OFDM
[5]  
Boche H, 2002, Z ANGEW MATH MECH, V82, P347, DOI 10.1002/1521-4001(200205)82:5<347::AID-ZAMM347>3.0.CO
[6]  
2-1
[7]   Peak-to-average power ratio in high-order OFDM [J].
Dinur, N ;
Wulich, D .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (06) :1063-1072
[8]   Multitone signals with low crest factor [J].
Friese, M .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1997, 45 (10) :1338-1344
[9]   On the achievable information rate with peak-power-limited orthogonal frequency-division multiplexing [J].
Friese, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2579-2587
[10]  
GALLAGER RG, 1968, INFORMATION THEORY R