Overexpression of human copper,zinc-superoxide dismutase (SOD1) prevents postischemic injury

被引:211
作者
Wang, PH
Chen, H
Qin, HH
Sankarapandi, S
Becher, MW
Wong, PC
Zweier, JL
机构
[1] Johns Hopkins Univ, Sch Med,Johns Hopkins Bayview Med Ctr, Dept Med,Mol & Cellular Biophys Labs, Div Cardiol, Baltimore, MD 21224 USA
[2] Johns Hopkins Univ, Sch Med, Johns Hopkins Bayview Med Ctr, Electron Paramagnet Resonance Ctr, Baltimore, MD 21224 USA
[3] Johns Hopkins Univ, Sch Med, Johns Hopkins Bayview Med Ctr, Dept Pathol,Neuropathol Lab, Baltimore, MD 21224 USA
关键词
transgenic model; superoxide radical; myocardial infarction; electron paramagnetic resonance; nuclear magnetic resonance;
D O I
10.1073/pnas.95.8.4556
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Superoxide and superoxide-derived oxidants have been hypothesized to be important mediators of postischemic injury. Whereas copper,zinc-superoxide dismutase, SOD1, efficiently dismutates superoxide, there has been controversy regarding whether increasing intracellular SOD1 expression would protect against or potentiate cellular injury. To determine whether increased SOD1 protects the heart from ischemia and reperfusion, studies were performed in a newly developed transgenic mouse model in which direct measurement of superoxide, contractile function, bioenergetics, and cell death could be performed. Transgenic mice with overexpression of human SOD1 were studied along with matched nontransgenic controls. Immunoblotting and immunohistology demonstrated that total SOD1 expression was increased 10-fold in hearts from transgenic mice compared with nontransgenic controls, with increased expression in both myocytes and endothelial cells, In nontransgenic hearts following 30 min of global ischemia a reperfusion-associated burst of superoxide generation was demonstrated by electron paramagnetic resonance spin trapping, However, in the transgenic hearts with overexpression of SOD1 the burst of superoxide generation was almost totally quenched, and this was accompanied by a 2-fold increase in the recovery of contractile function, a 2.2-fold decrease in infarct size, and a greatly improved recovery of high energy phosphates compared with that in nontransgenic controls. These results demonstrate that superoxide is an important mediator of postischemic injury and that increasing intracellular SOD1 dramatically protects the heart from this injury. Thus, increasing intracellular SOD1 expression may be a highly effective approach to decrease the cellular injury that occurs following reperfusion of ischemic tissues.
引用
收藏
页码:4556 / 4560
页数:5
相关论文
共 39 条
[1]   REDUCTION IN EXPERIMENTAL INFARCT SIZE BY RECOMBINANT HUMAN SUPEROXIDE-DISMUTASE - INSIGHTS INTO THE PATHOPHYSIOLOGY OF REPERFUSION INJURY [J].
AMBROSIO, G ;
BECKER, LC ;
HUTCHINS, GM ;
WEISMAN, HF ;
WEISFELDT, ML .
CIRCULATION, 1986, 74 (06) :1424-1433
[2]   IDENTIFICATION OF FREE-RADICALS IN MYOCARDIAL-ISCHEMIA REPERFUSION BY SPIN TRAPPING WITH NITRONE DMPO [J].
ARROYO, CM ;
KRAMER, JH ;
DICKENS, BF ;
WEGLICKI, WB .
FEBS LETTERS, 1987, 221 (01) :101-104
[3]  
Beauchamp C., 1971, ANAL BIOCHEM, V44, P276, DOI DOI 10.1016/0003-2697(71)90370-8
[4]   ISCHEMIC-INJURY MEDIATOR [J].
BECKMAN, JS .
NATURE, 1990, 345 (6270) :27-28
[5]  
BEYER W, 1991, PROG NUCLEIC ACID RE, V40, P221
[6]   COPPER, ZINC SUPEROXIDE-DISMUTASE IS PRIMARILY A CYTOSOLIC PROTEIN IN HUMAN-CELLS [J].
CRAPO, JD ;
OURY, T ;
RABOUILLE, C ;
SLOT, JW ;
CHANG, LY .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10405-10409
[7]  
DelaTorre R, 1996, EXPERIENTIA, V52, P871
[8]   AMYOTROPHIC-LATERAL-SCLEROSIS AND STRUCTURAL DEFECTS IN CU,ZN SUPEROXIDE-DISMUTASE [J].
DENG, HX ;
HENTATI, A ;
TAINER, JA ;
IQBAL, Z ;
CAYABYAB, A ;
HUNG, WY ;
GETZOFF, ED ;
HU, P ;
HERZFELDT, B ;
ROOS, RP ;
WARNER, C ;
DENG, G ;
SORIANO, E ;
SMYTH, C ;
PARGE, HE ;
AHMED, A ;
ROSES, AD ;
HALLEWELL, RA ;
PERICAKVANCE, MA ;
SIDDIQUE, T .
SCIENCE, 1993, 261 (5124) :1047-1051
[9]   TRANSGENIC MICE WITH INCREASED CU/ZN-SUPEROXIDE DISMUTASE ACTIVITY - ANIMAL-MODEL OF DOSAGE EFFECTS IN DOWN-SYNDROME [J].
EPSTEIN, CJ ;
AVRAHAM, KB ;
LOVETT, M ;
SMITH, S ;
ELROYSTEIN, O ;
ROTMAN, G ;
BRY, C ;
GRONER, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (22) :8044-8048
[10]   EARLY PHASE ACUTE MYOCARDIAL INFARCT SIZE QUANTIFICATION - VALIDATION OF THE TRIPHENYL TETRAZOLIUM CHLORIDE TISSUE ENZYME STAINING TECHNIQUE [J].
FISHBEIN, MC ;
MEERBAUM, S ;
RIT, J ;
LANDO, U ;
KANMATSUSE, K ;
MERCIER, JC ;
CORDAY, E ;
GANZ, W .
AMERICAN HEART JOURNAL, 1981, 101 (05) :593-600