Reduced growth factor responses in vascular smooth muscle cells derived from 12/15-lipoxygenase-deficient mice

被引:40
作者
Reddy, MA [1 ]
Kim, YS [1 ]
Lanting, L [1 ]
Natarajan, R [1 ]
机构
[1] City Hope Natl Med Ctr, Beckman Res Inst, Dept Diabet, Duarte, CA 91010 USA
关键词
lipoxygenase; muscle; smooth; vascular; signal transduction; angiotensin II; platelet-derived growth factor; gene regulation;
D O I
10.1161/01.HYP.0000069011.18333.08
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Biochemical and genetic evidence support the involvement of leukocyte- type 12/15-lipoxygenase enzyme and its products in the atherogenic process. We recently showed that products of the 12/15-lipoxygenase pathway play an important role in mediating hypertrophy, matrix protein production, and inflammatory gene expression in vascular smooth muscle cells (VSMC) through activation of mitogen activated protein kinases and key transcription factors. The current study is aimed at establishing the in vivo role of 12/15-lipoxygenase in VSMC by comparing growth factor-induced responses in VSMC derived from 12/15-lipoxygenase knockout mice versus genetic control wild-type mice. In the lipoxygenase knockout cells, 12/15-lipoxygenase protein was not expressed, and levels of its product, 12(S)-hydroxyeicosatetraenoic acid, were reduced (51% of wild type). Knockout cells exhibited significantly lower rates of growth factor-induced migration, fibronectin production, and incorporation of H-3-thymidine and H-3-leucine (54%, 55%, 61%, and 57% of wild type, respectively). Growth factor-induced superoxide production and p38 mitogen-activated protein kinase activation were also reduced in knockout cells. Serum-stimulated AP-1 transcription factor activation was markedly reduced (50% of wild type), whereas cAMP response element binding protein activation was abrogated in knockout cells. Furthermore, growth factor-induced mRNA expression of immediate early genes and fibronectin were also greatly reduced. These results suggest that the modulation of specific signaling pathways and growth-responsive genes may be responsible for the altered growth factor responses in the lipoxygenase knockout cells. They also demonstrate the important in vivo role of vascular 12/15-lipoxygenase in VSMC growth, migration, and matrix responses associated with hypertension, atherosclerosis, and restenosis.
引用
收藏
页码:1294 / 1300
页数:7
相关论文
共 48 条
[1]   A specific 15-lipoxygenase inhibitor limits the progression and monocyte-macrophage enrichment of hypercholesterolemia-induced atherosclerosis in the rabbit [J].
Bocan, TMA ;
Rosebury, WS ;
Mueller, SB ;
Kuchera, S ;
Welch, K ;
Daugherty, A ;
Cornicelli, JA .
ATHEROSCLEROSIS, 1998, 136 (02) :203-216
[2]   Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells [J].
Brown, MR ;
Miller, FJ ;
Li, WG ;
Ellingson, AN ;
Mozena, JD ;
Chatterjee, P ;
Engelhardt, JF ;
Zwacka, RM ;
Oberley, LW ;
Fang, X ;
Spector, AA ;
Weintraub, NL .
CIRCULATION RESEARCH, 1999, 85 (06) :524-533
[3]  
CHEN XS, 1994, J BIOL CHEM, V269, P13979
[4]   Catalytic consumption of nitric oxide by 12/15-lipoxygenase:: Inhibition of monocyte soluble guanylate cyclase activation [J].
Coffey, MJ ;
Natarajan, R ;
Chumley, PH ;
Coles, B ;
Thimmalapura, PR ;
Nowell, M ;
Kühn, H ;
Lewis, MJ ;
Freeman, BA ;
O'Donnell, VB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (14) :8006-8011
[5]   SPECIFIC INFLAMMATORY CYTOKINES REGULATE THE EXPRESSION OF HUMAN MONOCYTE 15-LIPOXYGENASE [J].
CONRAD, DJ ;
KUHN, H ;
MULKINS, M ;
HIGHLAND, E ;
SIGAL, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (01) :217-221
[6]   Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice [J].
Cyrus, T ;
Witztum, JL ;
Rader, DJ ;
Tangirala, R ;
Fazio, S ;
Linton, MF ;
Funk, CD .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (11) :1597-1604
[7]  
Cyrus T, 2001, CIRCULATION, V103, P2277
[8]  
DEAN DC, 1990, J BIOL CHEM, V265, P3522
[9]   Lipoxygenase-dependent mechanisms in hypertension [J].
DelliPizzi, A ;
Guan, H ;
Tong, XG ;
Takizawa, H ;
Nasjletti, A .
CLINICAL AND EXPERIMENTAL HYPERTENSION, 2000, 22 (02) :181-192
[10]   LIPOXYGENASE CONTRIBUTES TO THE OXIDATION OF LIPIDS IN HUMAN ATHEROSCLEROTIC PLAQUES [J].
FOLCIK, VA ;
NIVARARISTY, RA ;
KRAJEWSKI, LP ;
CATHCART, MK .
JOURNAL OF CLINICAL INVESTIGATION, 1995, 96 (01) :504-510