Wide area real time kinematic decimetre positioning with multiple carrier GNSS signals

被引:44
作者
Feng YanMing [1 ]
Li BoFeng [1 ,2 ]
机构
[1] Queensland Univ Technol, Fac Sci & Technol, Brisbane, Qld 4001, Australia
[2] Tongji Univ, Dept Surveying & Geoinformat Engn, Shanghai 200092, Peoples R China
关键词
GNSS; three carrier ambiguity resolution; real time kinematic; decimetre positioning;
D O I
10.1007/s11430-010-0032-0
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper presents the technical basis for wide area real time decimetre positioning services using multiple carrier signals transmitted by future GNSS such as modernized GPS and Compass systems. The first step is to form two ionosphere-reduced extra-widelanes (EWL) that have the minimal total noise levels in cycles, considering the effects of the ionospheric and tropospheric delays, orbital error, and phase noise terms in various observational environments. The proposed three carrier ambiguity resolution approach can determine the integer ambiguities of the selected EWL signals with geometry-free and geometrybased estimations respectively over the distances of typically hundreds of kilometres. With two ambiguity-fixed EWL signals, the kinematic positioning solutions can be achieved in decimetre level accuracy. A semi-simulation method is employed to generate three frequency Compass data to demonstrate the above expected performance for decimetre positioning services. Both theoretical and experimental results have demonstrated the overall 3D root mean square accuracy of better than 15 cm obtained through with a phase smoothing process over 120 epochs. The dominating error factor in this positioning result is the residual tropospheric biases, which would become less correlated as the baselines grow beyond hundreds of kilometres. With respect to dual-frequency based precise point positioning and wide area differential positioning solutions, a major advantage of using the third frequency signals is the convergence time being shorten from tens of minutes to a few minutes. In addition, due to the instant ambiguity resolution capability, phase breaks or cycle slips no longer affect the continuity of the solutions. This reliable decimetre positioning capability introduces a significant improvement to safety-of-life, liability-critical and professional applications.
引用
收藏
页码:731 / 740
页数:10
相关论文
共 17 条
  • [1] [Anonymous], 2005, J GLOB POSITIONING S
  • [2] [Anonymous], ION GNSS 2008
  • [3] Collins JP, 1997, 187 U NEW BRUNSW DEP
  • [4] de Jonge PJ, 2000, P ION NTM 2000 26 28, P605
  • [5] A Benefit of Multiple Carrier GNSS Signals: Regional Scale Network-Based RTK with Doubled Inter-Station Distances
    Feng, Y.
    Li, B.
    [J]. JOURNAL OF SPATIAL SCIENCE, 2008, 53 (02) : 135 - 147
  • [6] Feng Y., 2005, the proceedings of ION GNSS 2005, P2277
  • [7] GNSS three carrier ambiguity resolution using ionosphere-reduced virtual signals
    Feng, Yanming
    [J]. JOURNAL OF GEODESY, 2008, 82 (12) : 847 - 862
  • [8] Network-based geometry-free three carrier ambiguity resolution and phase bias calibration
    Feng, Yanming
    Rizos, Chris
    [J]. GPS SOLUTIONS, 2009, 13 (01) : 43 - 56
  • [9] Forssell B, 1997, ION GPS-97, PT 1 AND 2, P1727
  • [10] Han S., 1999, PROC ION 55 ANN M, P315