The proteasome: a proteolytic nanomachine of cell regulation and waste disposal

被引:199
作者
Wolf, DH [1 ]
Hilt, W [1 ]
机构
[1] Univ Stuttgart, Inst Biochem, D-70569 Stuttgart, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2004年 / 1695卷 / 1-3期
关键词
proteasome; proteolysis; ubiquitin; regulation;
D O I
10.1016/j.bbamcr.2004.10.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome. a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 31
页数:13
相关论文
共 185 条
[1]  
ACHSTETTER T, 1984, J BIOL CHEM, V259, P3344
[2]   The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways [J].
Amerik, AY ;
Nowak, J ;
Swaminathan, S ;
Hochstrasser, M .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (10) :3365-3380
[3]   Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation [J].
Arendt, CS ;
Hochstrasser, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7156-7161
[4]   Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly [J].
Arendt, CS ;
Hochstrasser, M .
EMBO JOURNAL, 1999, 18 (13) :3575-3585
[5]   IDENTITY OF THE 19S PROSOME PARTICLE WITH THE LARGE MULTIFUNCTIONAL PROTEASE COMPLEX OF MAMMALIAN-CELLS (THE PROTEASOME) [J].
ARRIGO, AP ;
TANAKA, K ;
GOLDBERG, AL ;
WELCH, WJ .
NATURE, 1988, 331 (6152) :192-194
[6]   Ubiquitin-proteasome system - Keepers at the final gates: regulatory complexes and gating of the proteasome channel [J].
Bajorek, M ;
Glickmann, MH .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2004, 61 (13) :1579-1588
[7]   The proteasome:: Paradigm of a self-compartmentalizing protease [J].
Baumeister, W ;
Walz, J ;
Zühl, F ;
Seemuller, E .
CELL, 1998, 92 (03) :367-380
[8]  
Bogyo M, 2002, CURR TOP MICROBIOL, V268, P185
[9]   A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14 [J].
Borodovsky, A ;
Kessler, BM ;
Casagrande, R ;
Overkleeft, HS ;
Wilkinson, KD ;
Ploegh, HL .
EMBO JOURNAL, 2001, 20 (18) :5187-5196
[10]   The base of the proteasome regulatory particle exhibits chaperone-like activity [J].
Braun, BC ;
Glickman, M ;
Kraft, R ;
Dahlmann, B ;
Kloetzel, PM ;
Finley, D ;
Schmidt, M .
NATURE CELL BIOLOGY, 1999, 1 (04) :221-226