Calcineurin and beyond - Cardiac hypertrophic signaling

被引:204
作者
Molkentin, JD [1 ]
机构
[1] Univ Cincinnati, Childrens Hosp, Med Ctr, Dept Pediat,Div Mol Cardiovasc Biol, Cincinnati, OH 45229 USA
关键词
calcineurin; cardiac hypertrophy; transcription; heart failure; signaling;
D O I
10.1161/01.RES.87.9.731
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In response to increased ventricular wall tension or neurohumoral stimuli, the myocardium undergoes an adaptive hypertrophy response that temporarily augments pump function. Although initially beneficial, sustained cardiac hypertrophy can lead to decompensation and cardiomyopathy. Recent studies have focused on characterizing the molecular mechanisms that underlie cardiac hypertrophy. An increasing number of signal transduction pathways have been identified as important regulators of the hypertrophic response, including the low-molecular weight GTPases (Ras, RhoA, and Rac), mitogen-activated protein kinases, protein kinase C, and calcineurin. This review will discuss an emerging body of evidence that implicates the calcium-calmodulin-activated protein phosphatase calcineurin as a physiological regulator of the cardiac hypertrophic response. Although the sufficiency of calcineurin to promote cardiomyocyte hypertrophy in vivo and in vitro is established, its overall necessity as a hypertrophic mediator is currently an area of ongoing debate. The use of the calcineurin-inhibitory agents cyclosporine A and FK506 have suggested a necessary role for calcineurin in many, but not all, animal models of hypertrophy or cardiomyopathy. The evidence implicating a role for calcineurin signaling in the heart will be weighed against a growing body of literature suggesting necessary roles for a diverse array of intracellular signaling pathways, highlighting the multifactorial nature of the hypertrophic program.
引用
收藏
页码:731 / 738
页数:8
相关论文
共 85 条
[1]   Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells [J].
Abbott, KL ;
Friday, BB ;
Thaloor, D ;
Murphy, TJ ;
Pavlath, GK .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (10) :2905-2916
[2]   A Ras-dependent pathway regulates RNA polymerase II phosphorylation in cardiac myocytes: Implications for cardiac hypertrophy [J].
Abdellatif, M ;
Packer, SE ;
Michael, LH ;
Zhang, D ;
Charng, MJ ;
Schneider, MD .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (11) :6729-6736
[3]   Oxidative stress activates extracellular signal-regulated kinases through Src and ras in cultured cardiac myocytes of neonatal rats [J].
Aikawa, R ;
Komuro, I ;
Yamazaki, T ;
Zou, YZ ;
Kudoh, S ;
Tanaka, M ;
Shiojima, I ;
Hiroi, Y ;
Yazaki, Y .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (07) :1813-1821
[4]   Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy [J].
Akhter, SA ;
Luttrell, LM ;
Rockman, HA ;
Iaccarino, G ;
Lefkowitz, RJ ;
Koch, WJ .
SCIENCE, 1998, 280 (5363) :574-577
[5]   Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A [J].
Aramburu, J ;
Yaffe, MB ;
López-Rodríguez, C ;
Cantley, LC ;
Hogan, PG ;
Rao, A .
SCIENCE, 1999, 285 (5436) :2129-2133
[6]  
Avraham A, 1998, EUR J IMMUNOL, V28, P2320, DOI 10.1002/(SICI)1521-4141(199808)28:08<2320::AID-IMMU2320>3.0.CO
[7]  
2-K
[8]   Alterations in calcium handling in cardiac hypertrophy and heart failure [J].
Balke, CW ;
Shorofsky, SR .
CARDIOVASCULAR RESEARCH, 1998, 37 (02) :290-299
[9]   Quantitating immunosuppression - Estimating the 50% inhibitory concentration for in vivo cyclosporine in mice [J].
Batiuk, TD ;
Urmson, J ;
Vincent, D ;
Yatscoff, RW ;
Halloran, PF .
TRANSPLANTATION, 1996, 61 (11) :1618-1624
[10]   Ca2+-dependent gene expression mediated by MEF2 transcription factors [J].
Blaeser, F ;
Ho, N ;
Prywes, R ;
Chatila, TA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (01) :197-209