Quantum-mechanical nonperturbative response of driven chaotic mesoscopic systems

被引:44
作者
Cohen, D [1 ]
Kottos, T
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Max Planck Inst Stromungsforsch, D-37073 Gottingen, Germany
关键词
D O I
10.1103/PhysRevLett.85.4839
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Consider a time-dependent Hamiltonian H (Q, P; x(t)) with periodic driving x(t) = A sin(Omegat). It is assumed that the classical dynamics is chaotic, and that its power spectrum extends over some frequency range \w\ < <omega>(cl). Both classical and quantum-mechanical (QM) linear response theory (LRT) predict a relatively large response for Omega < <omega>(cl), and a relatively small response otherwise, independent of the driving amplitude A. We define a nonperturbative regime in the (Omega ,A) space, where LRT fails, and demonstrate this failure numerically. For A > A(prt), where A(prt) proportional to h, the system may have a relatively strong response for Omega > omega (cl) due to QM nonperturbative effect.
引用
收藏
页码:4839 / 4843
页数:5
相关论文
共 25 条
[1]  
BARNETT A, NLINCD0006041
[2]   ONE-BODY DISSIPATION AND SUPER-VISCIDITY OF NUCLEI [J].
BLOCKI, J ;
BONEH, Y ;
NIX, JR ;
RANDRUP, J ;
ROBEL, M ;
SIERK, AJ ;
SWIATECKI, WJ .
ANNALS OF PHYSICS, 1978, 113 (02) :330-386
[3]   ERGODIC ADIABATIC INVARIANTS OF CHAOTIC SYSTEMS [J].
BROWN, R ;
OTT, E ;
GREBOGI, C .
PHYSICAL REVIEW LETTERS, 1987, 59 (11) :1173-1176
[4]   THE GOODNESS OF ERGODIC ADIABATIC INVARIANTS [J].
BROWN, R ;
OTT, E ;
GREBOGI, C .
JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (3-4) :511-550
[5]   Random matrix approach to quantum dissipation [J].
Bulgac, A ;
Dang, GD ;
Kusnezov, D .
PHYSICAL REVIEW E, 1996, 54 (04) :3468-3478
[6]   BAND-RANDOM-MATRIX MODEL FOR QUANTUM LOCALIZATION IN CONSERVATIVE-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I ;
IZRAILEV, FM .
PHYSICAL REVIEW E, 1993, 48 (03) :R1613-R1616
[7]   Quantum ergodicity and localization in conservative systems: The Wigner band random matrix model [J].
Casati, G ;
Chirikov, BV ;
Guarneri, I ;
Izrailev, FM .
PHYSICS LETTERS A, 1996, 223 (06) :430-435
[8]   Chaos and energy spreading for time-dependent hamiltonians, and the various regimes in the theory of quantum dissipation [J].
Cohen, D .
ANNALS OF PHYSICS, 2000, 283 (02) :175-231
[9]   Wave packet dynamics in energy space, random matrix theory, and the quantum-classical correspondence [J].
Cohen, D ;
Izrailev, FM ;
Kottos, T .
PHYSICAL REVIEW LETTERS, 2000, 84 (10) :2052-2055
[10]   Quantum dissipation due to the interaction with chaotic degrees of freedom and the correspondence principle [J].
Cohen, D .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :4951-4955