The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of Arabidopsis

被引:328
作者
Beisson, Fred [1 ]
Li, Yonghua [1 ]
Bonaventure, Gustavo [1 ]
Pollard, Mike [1 ]
Ohlrogge, John B. [1 ]
机构
[1] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
关键词
D O I
10.1105/tpc.106.048033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Suberin and cutin are fatty acid-and glycerol-based plant polymers that act as pathogen barriers and function in the control of water and solute transport. However, despite important physiological roles, their biosynthetic pathways, including the acyl transfer reactions, remain hypothetical. We report the characterization of two suberin mutants (gpat5-1 and gpat5-2) of Arabidopsis thaliana GPAT5, encoding a protein with acyl-CoA:glycerol-3-phosphate acyltransferase activity. RT-PCR and beta-glucuronidase-promoter fusion analyses demonstrated GPAT5 expression in seed coat, root, hypocotyl, and anther. The gpat5 plants showed a 50% decrease in aliphatic suberin in young roots and produced seed coats with a severalfold reduction in very long chain dicarboxylic acid and omega-hydroxy fatty acids typical of suberin but no change in the composition or content of membrane or storage glycerolipids or surface waxes. Consistent with their altered suberin, seed coats of gpat5 mutants had a steep increase in permeability to tetrazolium salts compared with wild-type seed coats. Furthermore, the germination rate of gpat5 seeds under high salt was reduced, and gpat5 seedlings had lower tolerance to salt stress. These results provide evidence for a critical role of GPAT5 in polyester biogenesis in seed coats and roots and for the importance of lipid polymer structures in the normal function of these organs.
引用
收藏
页码:351 / 368
页数:18
相关论文
共 85 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Apical organization and maturation of the cortex and vascular cylinder in Arabidopsis thaliana (Brassicaceae) roots [J].
Baum, SF ;
Dubrovsky, JG ;
Rost, TL .
AMERICAN JOURNAL OF BOTANY, 2002, 89 (06) :908-920
[3]  
BECHTOLD N, 1993, CR ACAD SCI III-VIE, V316, P1194
[4]   Histological study of seed coat development in Arabidopsis thaliana [J].
Beeckman, T ;
De Rycke, R ;
Viane, R ;
Inzé, D .
JOURNAL OF PLANT RESEARCH, 2000, 113 (1110) :139-148
[5]   Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a Web-based database [J].
Beisson, F ;
Koo, AJK ;
Ruuska, S ;
Schwender, J ;
Pollard, M ;
Thelen, JJ ;
Paddock, T ;
Salas, JJ ;
Savage, L ;
Milcamps, A ;
Mhaske, VB ;
Cho, YH ;
Ohlrogge, JB .
PLANT PHYSIOLOGY, 2003, 132 (02) :681-697
[6]  
Bentsink Leonie, 2008, Arabidopsis Book, V6, pe0119, DOI 10.1199/tab.0119
[7]   HYDROXYCINNAMIC ACID-DERIVED POLYMERS CONSTITUTE THE POLYAROMATIC DOMAIN OF SUBERIN [J].
BERNARDS, MA ;
LOPEZ, ML ;
ZAJICEK, J ;
LEWIS, NG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (13) :7382-7386
[8]  
Bernards MA, 2002, CAN J BOT, V80, P227, DOI [10.1139/B02-017, 10.1139/b02-017]
[9]   Nitric oxide reduces seed dormancy in Arabidopsis [J].
Bethke, PC ;
Libourel, IGL ;
Jones, RL .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (03) :517-526
[10]   Seed germination and dormancy [J].
Bewley, JD .
PLANT CELL, 1997, 9 (07) :1055-1066