Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells

被引:180
作者
Srinivasan, S
Hatley, ME
Bolick, DT
Palmer, LA
Edelstein, D
Brownlee, M
Hedrick, CC
机构
[1] Univ Virginia, Div Endocrinol & Metab, Charlottesville, VA 22908 USA
[2] Univ Virginia, Cardiovasc Res Ctr, Charlottesville, VA 22908 USA
[3] Univ Virginia, Dept Pediat & Anesthesiol, Charlottesville, VA 22908 USA
[4] Albert Einstein Coll Med, Diabet Res Ctr, Bronx, NY 10467 USA
关键词
AP-1; diabetes; endothelial; eNOS; superoxide;
D O I
10.1007/s00125-004-1525-1
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis. Hyperglycaemia is a primary cause of vascular complications in diabetes. A hallmark of these vascular complications is endothelial cell dysfunction, which is partly due to the reduced production of nitric oxide. The aim of this study was to investigate the regulation of endothelial nitric oxide synthase (eNOS) activity by acute and chronic elevated glucose. Methods. Human aortic endothelial cells were cultured in 5.5 mmol/l (NG) or 25 mmol/l glucose (HG) for 4 h, 1 day, 3 days or 7 days. Mouse aortic endothelial cells were freshly isolated from C57BL/6J control and diabetic db/db mice. The expression and activity of eNOS were measured using quantitative PCR and nitrite measurements respectively. The binding of activator protein-1 (AP-1) to DNA in nuclear extracts was determined using electrophoretic mobility-shift assays. Results. Acute exposure (4 h) of human aortic endothelial cells to 25 mmol/l glucose moderately increased eNOS activity and eNOS mRNA and protein expression. In contrast, chronic exposure to elevated glucose (25 mmol/l for 7 days) reduced total nitrite levels (46% reduction), levels of eNOS mRNA (46% reduction) and eNOS protein (65% reduction). In addition, AP-1 DNA binding activity was increased in chronic HG-cultured human aortic endothelial cells, and this effect was reduced by the specific inhibition of reactive oxygen species production through the mitochondrial electron transport chain. Mutation of AP-1 sites in the human eNOS promoter reversed the effects of HG. Compared with C57BL/6J control mice, eNOS mRNA levels in diabetic db/db mouse aortic endothelial cells were reduced by 60%. This decrease was reversed by the overexpression of manganese superoxide dismutase using an adenoviral construct. Conclusions/interpretation. In diabetes, the expression and activity of eNOS is regulated through glucose-mediated mitochondrial production of reactive oxygen species and activation of the oxidative stress transcription factor AP-1.
引用
收藏
页码:1727 / 1734
页数:8
相关论文
共 41 条
[1]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[2]  
Cosentino F, 1997, CIRCULATION, V96, P25
[3]  
DAI FX, 1993, J AM SOC NEPHROL, V4, P1327
[4]   Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression [J].
Ding, YX ;
Vaziri, ND ;
Coulson, R ;
Kamanna, VS ;
Roh, DD .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 279 (01) :E11-E17
[5]   Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation [J].
Du, XL ;
Edelstein, D ;
Rossetti, L ;
Fantus, IG ;
Goldberg, H ;
Ziyadeh, F ;
Wu, J ;
Brownlee, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :12222-12226
[6]   Generation of reactive oxygen intermediates, activation of NF-ΚB, and induction of apoptosis in human endothelial cells by glucose:: Role of nitric oxide synthase? [J].
Du, XL ;
Stockklauser-Färber, K ;
Rösen, P .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 27 (7-8) :752-763
[7]   Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site [J].
Du, XL ;
Edelstein, D ;
Dimmeler, S ;
Ju, QD ;
Sui, C ;
Brownlee, M .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (09) :1341-1348
[8]   Regulation of endothelium-derived nitric oxide production by the protein kinase Akt [J].
Fulton, D ;
Gratton, JP ;
McCabe, TJ ;
Fontana, J ;
Fujio, Y ;
Walsh, K ;
Franke, TF ;
Papapetropoulos, A ;
Sessa, WC .
NATURE, 1999, 399 (6736) :597-601
[9]   Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002 [J].
Gallis, B ;
Corthals, GL ;
Goodlett, DR ;
Ueba, H ;
Kim, F ;
Presnell, SR ;
Figeys, D ;
Harrison, DG ;
Berk, BC ;
Aebersold, R ;
Corson, MA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :30101-30108
[10]   Temporal regulation of endothelial ET-1 and eNOS expression in intact human conduit vessels exposed to different intraluminal pressure levels at physiological shear stress [J].
Gan, LM ;
Selin-Sjögren, L ;
Doroudi, R ;
Jern, S .
CARDIOVASCULAR RESEARCH, 2000, 48 (01) :168-177