Secondary bifurcations and localisation in a three-dimensional buckling model

被引:14
作者
Coman, CD [1 ]
机构
[1] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2004年 / 55卷 / 06期
关键词
secondary bifurcations; localisation; thin-walled structures; asymptotics;
D O I
10.1007/s00033-004-3099-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper revisits the effect of secondary bifurcations on the post-buckling response of a simple 3D system of elastically restrained beams, first discussed by Luongo in [19]. Our main objective is to show how to construct a uniform asymptotic expression for the localised buckling patterns experienced by this model. The governing equation is formulated as a fourth-order eigenvalue problem with non-constant coefficients and then a complex WKB technique is employed to yield the localised instability patterns. Numerical simulations supporting the analytical findings are included as well.
引用
收藏
页码:1050 / 1064
页数:15
相关论文
共 34 条
[1]  
Amazigo J. C., 1970, International Journal of Solids and Structures, V6, P1341, DOI 10.1016/0020-7683(70)90067-3
[2]  
[Anonymous], J APPL MECH
[3]  
[Anonymous], 1997, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user's Manual
[4]  
[Anonymous], 1994, PROGR PHYS
[5]   MULTIPLE EIGENVALUES LEAD TO SECONDARY BIFURCATION [J].
BAUER, L ;
KELLER, HB ;
REISS, EL .
SIAM REVIEW, 1975, 17 (01) :101-122
[6]  
Bender C. M., 1999, ADV MATH METHODS SCI, DOI DOI 10.1007/978-1-4757-3069-2
[7]  
Biot M.A., 1965, MECH INCREMENTAL DEF
[8]   SECONDARY BIFURCATIONS OF A THIN ROD UNDER AXIAL-COMPRESSION [J].
BUZANO, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (02) :312-321
[9]  
CAMOTIN D, 2000, P 3 INT C COUPL INST
[10]  
Champneys A, 1999, LOCALIZATION SOLITAR