A generalized Pancharatnam geometric phase formula for three-level quantum systems

被引:45
作者
Arvind
Mallesh, KS
Mukunda, N
机构
[1] UNIV MYSORE,DEPT STUDIES PHYS,MYSORE 570996,KARNATAKA,INDIA
[2] INDIAN INST SCI,CTR THEORET STUDIES,BANGALORE 560012,KARNATAKA,INDIA
[3] INDIAN INST SCI,JAWAHARLAL NEHRU CTR ADV SCI RES,BANGALORE 560064,KARNATAKA,INDIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 07期
关键词
D O I
10.1088/0305-4470/30/7/021
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a recently developed generalization of the Poincare sphere method, to represent pure states of a three-level quantum system in a convenient geometrical manner, The construction depends on the properties of the group SU(3) and its generators in the defining representation, and uses geometrical objects and operations in an eight-dimensional real Euclidean space. This construction is then used to develop a generalization of the well known Pancharatnam geometric phase formula, for evolution of a three-level system along a geodesic triangle in state space.
引用
收藏
页码:2417 / 2431
页数:15
相关论文
共 18 条
[1]   NOTE ON WIGNERS THEOREM ON SYMMETRY OPERATIONS [J].
BARGMANN, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :862-&
[2]   THE ADIABATIC PHASE AND PANCHARATNAM PHASE FOR POLARIZED-LIGHT [J].
BERRY, MV .
JOURNAL OF MODERN OPTICS, 1987, 34 (11) :1401-1407
[4]  
Born M., 1987, Principles of Optics
[5]   NON-INTEGRABLE QUANTUM PHASE IN THE EVOLUTION OF A SPIN-1 SYSTEM - A PHYSICAL CONSEQUENCE OF THE NON-TRIVIAL TOPOLOGY OF THE QUANTUM STATE-SPACE [J].
BOUCHIAT, C ;
GIBBONS, GW .
JOURNAL DE PHYSIQUE, 1988, 49 (02) :187-199
[6]  
Gell-Mann M., 1964, The Eightfold Way
[7]  
KHANNA G, 1997, IN PRESS ANN PHYS NY
[8]   QUANTUM KINEMATIC APPROACH TO THE GEOMETRIC PHASE .1. GENERAL FORMALISM [J].
MUKUNDA, N ;
SIMON, R .
ANNALS OF PHYSICS, 1993, 228 (02) :205-268
[9]  
MUKUNDA N, 1996, 3 LEVEL QUANTUM SYST
[10]  
MUKUNDA N, 1989, PRAMANA-J PHYS, V32, P769