Langevin equation for driven diffusive systems

被引:27
作者
Garrido, PL [1 ]
de los Santos, F
Munoz, MA
机构
[1] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
[2] Univ Rome La Sapienza, Dipartamento Fis, I-00185 Rome, Italy
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 01期
关键词
D O I
10.1103/PhysRevE.57.752
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An open controversy exists about the nature of the second-order nonequilibrium phase transition exhibited by a lattice gas in which particles are driven along one of the lattice directions by an external agent. Field theoretical predictions and Monte Carlo estimates for the critical exponent values do not seem to agree with each other. In this paper we introduce a Langevin equation in which the effects of the microscopic dynamics are carefully taken into account. We show that the order parameter critical exponent when the drive is infinite (no backwards jumps) is not mean-field-like, in contrast with the prediction for finite values of the drive. This finding seems to reconcile field theoretical and numerical results.
引用
收藏
页码:752 / 755
页数:4
相关论文
共 22 条
[1]   PHASE-TRANSITIONS IN A DRIVEN LATTICE-GAS IN 2 PLANES [J].
ACHAHBAR, A ;
MARRO, J .
JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (5-6) :1493-1520
[2]  
[Anonymous], 1995, PHASE TRANSITIONS CR, DOI DOI 10.1016/S1062-7901(06)80014-5
[3]  
[Anonymous], 1989, FIELD THEORY RENORMA
[4]  
Barabasi A-Ls, 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[5]   NONEQUILIBRIUM STEADY-STATES AND PHASE-TRANSITIONS IN DRIVEN DIFFUSIVE SYSTEMS [J].
GARRIDO, PL ;
MARRO, J ;
DICKMAN, R .
ANNALS OF PHYSICS, 1990, 199 (02) :366-411
[6]   CONTINUUM DESCRIPTION FOR NONEQUILIBRIUM COMPETING DYNAMIC-MODELS [J].
GARRIDO, PL ;
MUNOZ, MA .
PHYSICAL REVIEW LETTERS, 1995, 75 (10) :1875-1878
[7]   STATISTICAL-MECHANICS OF PROBABILISTIC CELLULAR AUTOMATA [J].
GRINSTEIN, G ;
JAYAPRAKASH, C ;
YU, H .
PHYSICAL REVIEW LETTERS, 1985, 55 (23) :2527-2530
[8]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[9]   FIELD-THEORY OF CRITICAL-BEHAVIOR IN DRIVEN DIFFUSIVE SYSTEMS [J].
JANSSEN, HK ;
SCHMITTMANN, B .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 64 (04) :503-514
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892