Hyperspectral Imagery Classification Using Sparse Representations of Convolutional Neural Network Features

被引:162
作者
Liang, Heming [1 ]
Li, Qi [1 ]
机构
[1] Peking Univ, Inst Remote Sensing & GIS, Beijing 100871, Peoples R China
关键词
deep learning; deep features; sparse representation; remote sensing image classification; MORPHOLOGICAL ATTRIBUTE PROFILES; SPATIAL CLASSIFICATION; FEATURE-EXTRACTION;
D O I
10.3390/rs8020099
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In recent years, deep learning has been widely studied for remote sensing image analysis. In this paper, we propose a method for remotely-sensed image classification by using sparse representation of deep learning features. Specifically, we use convolutional neural networks (CNN) to extract deep features from high levels of the image data. Deep features provide high level spatial information created by hierarchical structures. Although the deep features may have high dimensionality, they lie in class-dependent sub-spaces or sub-manifolds. We investigate the characteristics of deep features by using a sparse representation classification framework. The experimental results reveal that the proposed method exploits the inherent low-dimensional structure of the deep features to provide better classification results as compared to the results obtained by widely-used feature exploration algorithms, such as the extended morphological attribute profiles (EMAPs) and sparse coding (SC).
引用
收藏
页数:16
相关论文
共 35 条
[1]   Deep Machine Learning-A New Frontier in Artificial Intelligence Research [J].
Arel, Itamar ;
Rose, Derek C. ;
Karnowski, Thomas P. .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2010, 5 (04) :13-18
[2]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[3]   Classification and feature extraction for remote sensing images from urban areas based on morphological transformations [J].
Benediktsson, JA ;
Pesaresi, M ;
Arnason, K .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (09) :1940-1949
[4]   Spectral-Spatial Classification of Multispectral Images Using Kernel Feature Space Representation [J].
Bernabe, Sergio ;
Marpu, Prashanth Reddy ;
Plaza, Antonio ;
Dalla Mura, Mauro ;
Benediktsson, Jon Atli .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) :288-292
[5]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81
[6]   Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks [J].
Chen, Xueyun ;
Xiang, Shiming ;
Liu, Cheng-Lin ;
Pan, Chun-Hong .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (10) :1797-1801
[7]   Hyperspectral Image Classification Using Dictionary-Based Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10) :3973-3985
[8]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[9]   Morphological Attribute Profiles for the Analysis of Very High Resolution Images [J].
Dalla Mura, Mauro ;
Benediktsson, Jon Atli ;
Waske, Bjoern ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10) :3747-3762
[10]   Image processing with neural networks - a review [J].
Egmont-Petersen, M ;
de Ridder, D ;
Handels, H .
PATTERN RECOGNITION, 2002, 35 (10) :2279-2301