Requirement of the calcineurin subunit gene canB2 for indirect flight muscle formation in Drosophila

被引:26
作者
Gajewski, K
Wang, JB
Molkentin, JD
Chen, EH
Olson, EN
Schulz, RA
机构
[1] Univ Texas, MD Anderson Canc Ctr, Dept Biochem & Mol Biol, Houston, TX 77030 USA
[2] Childrens Hosp, Med Ctr, Div Mol Cardiovasc Biol, Cincinnati, OH 45229 USA
[3] Univ Texas, SW Med Ctr Dallas, Dept Mol Biol, Dallas, TX 75390 USA
关键词
D O I
10.1073/pnas.0337662100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Calcineurin is a calcium-activated protein phosphatase involved in multiple aspects of cardiac and skeletal muscle development and disease. Genes encoding calcineurin subunit proteins are highly conserved among animal species. Toward the goal of identifying new calcineurin-interacting loci that function in myogenic processes, we expressed an activated form of mouse calcineurin A in Drosophila and screened for suppressors of the phosphatase-induced lethality. Here, we demonstrate that a mutation in the canB2 gene, which encodes a regulatory subunit of Drosophila calcineurin, can suppress a pupal developmental arrest phenotype to adult viability. As canB2 is an essential gene and rare homozygous escapers are flightless, we further analyzed canB2 expression and function in pupae and adults. The gene is expressed in the forming indirect flight muscles and central nervous system during pupal development. A canA gene is comparably expressed in these tissues. Consistent with the observed muscle expression, canB2 mutants exhibit severe defects in the organization of their indirect flight muscles, a phenotype that is likely caused by muscle hyper-contractility. Together, these findings demonstrate a vital role for the phosphatase in this specific facet of Drosophila myogenesis and show conserved fly and vertebrate calcineurin genes contribute prominently to fundamental processes of muscle formation and function.
引用
收藏
页码:1040 / 1045
页数:6
相关论文
共 26 条
[1]   Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells [J].
Abbott, KL ;
Friday, BB ;
Thaloor, D ;
Murphy, TJ ;
Pavlath, GK .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (10) :2905-2916
[2]  
BRAND AH, 1993, DEVELOPMENT, V118, P401
[3]   Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila [J].
Chen, EH ;
Olson, EN .
DEVELOPMENTAL CELL, 2001, 1 (05) :705-715
[4]   EcR isoforms in Drosophila:: testing tissue-specific requirements by targeted blockade and rescue [J].
Cherbas, L ;
Hu, X ;
Zhimulev, I ;
Belyaeva, E ;
Cherbas, P .
DEVELOPMENT, 2003, 130 (02) :271-284
[5]   IDENTIFICATION OF CALCINEURIN AS A KEY SIGNALING ENZYME IN LYMPHOCYTE-T ACTIVATION [J].
CLIPSTONE, NA ;
CRABTREE, GR .
NATURE, 1992, 357 (6380) :695-697
[6]   Calcium, calcineurin, and the control of transcription [J].
Crabtree, GR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2313-2316
[7]   Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum [J].
de la Pompa, JL ;
Timmerman, LA ;
Takimoto, H ;
Yoshida, H ;
Elia, AJ ;
Samper, E ;
Potter, J ;
Wakeham, A ;
Marengere, L ;
Langille, BL ;
Crabtree, GR ;
Mak, TW .
NATURE, 1998, 392 (6672) :182-186
[8]  
FERNANDES J, 1991, DEVELOPMENT, V113, P67
[9]  
FLETCHER JC, 1995, DEVELOPMENT, V121, P1455
[10]  
Gajewski K, 1999, DEVELOPMENT, V126, P5679