A class of piecewise linear differential equations arising in biological models

被引:126
作者
Gouzé, JL
Sari, T
机构
[1] INRIA, COMORE, F-06902 Sophia Antipolis, France
[2] Univ Haute Alsace, Lab Math & Applicat, F-68093 Mulhouse, France
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2002年 / 17卷 / 04期
关键词
D O I
10.1080/1468936021000041681
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of the solutions of a class of piecewise-linear differential equations. The equations are appropriate to model biological systems (e.g. genetic networks) in which there are switch-like interactions between the elements. The analysis uses the concept of Filippov solutions of differential equations with a discontinuous right-hand side. It gives an insight into the so-called singular solutions which lie on the surfaces of discontinuity. We show that this notion clarifies the Study of several examples studied in the literature.
引用
收藏
页码:299 / 316
页数:18
相关论文
共 16 条
[1]   Modeling and simulation of genetic regulatory systems: A literature review [J].
De Jong, H .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (01) :67-103
[2]  
De Jong H, 2001, P 17 INT JOINT C ART, V1, P67
[3]  
DEJONG H, 2001, 4262 INRIA
[4]  
DEJONG H, 2002, 4407 INRIA
[5]  
Feigin MI, 1995, PMM-J APPL MATH MEC+, V59, P853, DOI 10.1016/0021-8928(95)00118-2
[6]  
FILIPPOV AF, 1988, DIFFERENTIAL EQUAITO
[7]  
GLASS L, 1978, B MATH BIOL, V40, P27
[8]   STABLE OSCILLATIONS IN MATHEMATICAL-MODELS OF BIOLOGICAL-CONTROL SYSTEMS [J].
GLASS, L ;
PASTERNACK, JS .
JOURNAL OF MATHEMATICAL BIOLOGY, 1978, 6 (03) :207-223
[9]  
GOUZE JL, 2001, 4207 INRIA
[10]   PERIODIC-SOLUTIONS IN SYSTEMS OF PIECEWISE-LINEAR DIFFERENTIAL-EQUATIONS [J].
MESTL, T ;
PLAHTE, E ;
OMHOLT, SW .
DYNAMICS AND STABILITY OF SYSTEMS, 1995, 10 (02) :179-193