Measuring the complexity of non-fractal shapes by a fractal method

被引:38
作者
Carlin, M [1 ]
机构
[1] Univ Oslo, SINTEF Elect & Cybernet, N-0314 Oslo, Norway
关键词
complexity; non-fractal objects; divider-step method; fractal dimension; Hausdorff measure;
D O I
10.1016/S0167-8655(00)00061-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The divider-step method is commonly used to measure the fractal dimension D of fractal objects. We propose to use an approximate Hausdorff measure in the dimension D to estimate the complexity of non-fractal objects. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1013 / 1017
页数:5
相关论文
共 4 条
[1]  
Mandelbrot B. B., 1983, FRACTAL GEOMETRY NAT, P14
[2]   METHOD FOR EVALUATING THE FRACTAL DIMENSION OF CURVES USING CONVEX HULLS [J].
NORMANT, F ;
TRICOT, C .
PHYSICAL REVIEW A, 1991, 43 (12) :6518-6525
[3]  
STOYAN D, 1994, FRACTALS RANDOM SHAP, P39
[4]  
Voss R., 1988, SCI FRACTAL IMAGES, P21, DOI DOI 10.1007/978-1-4612-3784-6_1